libRmath.js
This R statistical nmath
re-created in typescript/javascript.
This is the documentation of 2.0.0, for the lts branch of version 1.x see here.
If you were not using a previous version to 2.0.0, you can skip breaking changes and go to:
BREAKING CHANGES For version 2.0
Removed
RNG (normal and uniform) are only selectable via RNGkind
function.
The normal and uniform implementation of the various RNG's are not exported publicly anymore
Select normal and uniform RNG's via the function RNGkind
.
import { AhrensDieter } from 'lib-r-math.js';
const ad = new AhrensDieter();
ad.random();
import { RNGkind, rnorm } from 'lib-r-math.js';
RNGkind({ normal: 'AHRENS_DIETER' });
rnorm(8);
helper functions for data mangling
Functions removed from 2.0.0 onwards: any
, arrayrify
, multiplex
, each
, flatten
, c
, map
, selector
, seq
, summary
.
It is recommended you either use well established js tools like Rxjs or Ramdajs to mangle arrays and data.
Removed helper functions for limiting numeric precision
Functions removed from 2.0.0 onwards: numberPrecision
This function mimicked the R's options(digits=N)
.
Changed
helper functions
Functions changed from 2.0.0 onwards: timeseed
.
timeseed
is now replaced by a cryptographic safe seed seed
.
Sample distributions return a result of type Float64Array
.
Functions changed from 2.0.0 onwards:
All these functions will return type of Float64Array
:
rbeta
, rbinom
, rcauchy
, rchisq
, rexp
, rf
, rgamma
, rgeom
, rhyper
, rlogis
, rlnorm
, rmultinom
, rnorm
, rpois
, rsignrank
, rt
,runif
, rweibull
, rwilcox
.
For single scalar (number) return values, use the analogs:
rbetaOne
, rbinomOne
, rcauchyOne
, rchisqOne
, rexpOne
, rfOne
, rgammaOne
, rgeomOne
, rhyperOne
, rlogisOne
, rlnormOne
, rnormOne
, rpoisOne
, rsignrankOne
, rtOne
,runifOne
, rweibullOne
, rwilcoxOne
.
Example:
import { rbinom, rbinomOne, setSeed } from 'lib-r-math.js';
rbinom(0);
setSeed(123);
rbinom(2, 8, 0.5);
setSeed(456);
rbinomOne(350, 0.5);
UMD module removed
There is no UMD module from 2.0.0. These are the module types for node and browser
- node: esm (multiple files), commonjs
- web: esm (single bundle) and iife ("immediately-invoked Function Expression")
Installation and usage
Minimal version of node required is 16.18.1
.
npm i lib-r-math.js
lib-r-math.js supports the following module types:
library = import('https://cdn.skypack.dev/lib-r-math.js@latest/dist/web.esm.mjs');
library.BesselJ(3, 0.4);
ESM for use as Browser client
<script type="module">
import { BesselJ } from 'https://unpkg.dev/lib-r-math.js@latest/dist/web.esm.mjs';
console.log(BesselJ(3, 0.4));
</script>
IIFE (immediately-invoked Function Expression) for use in Browser client
<script src="https://unpkg.dev/lib-r-math.js@latest/dist/web.iife.js"></script>
<script>
const answ = window.R.BesselJ(3, 0.4);
console.log(answ);
</script>
ESM for Node
import { BesselJ } from 'lib-r-math.js';
const answ = BesselJ(3, 0.4);
COMMONJS for node
const { BesselJ } = require('lib-r-math.js');
const answ = BesselJ(3, 0.4);
Table of Contents
Auxiliary functions
RNGkind
RNGkind is the analog to R's "RNGkind". This is how you select what RNG (normal and uniform) you use and the samplingKind
Follows closely the R implementation here
R console:
> RNGkind()
[1] "Mersenne-Twister" "Ahrens-Dieter"
[3] "Rejection"
Just like in R, calling RNGkind
with no argument returns the currently active RNG's (uniform and normal) and sample kind (Rounding or Rejection)
Like in R, RNGkind
optionally takes an argument of type RandomGenSet
, after processing it will return the (adjusted) RandomGenSet
indicating what RNG's and "kind of sampling" is being used.
Rjs typescript decl:
function RNGkind(options?: RandomGenSet): RandomGenSet;
Arguments:
options
: an object of type RandomGenSet
options.uniform
: string, specify name of uniform RNG to use.options.normal
: string, specify nam of normal RNG (shaper) to useoptions.sampleKind
: string, specify sample strategy to use
Typescript definition:
type RandomGenSet = {
uniform?:
| 'KNUTH_TAOCP'
| 'KNUTH_TAOCP2002'
| 'LECUYER_CMRG'
| 'MARSAGLIA_MULTICARRY'
| 'MERSENNE_TWISTER'
| 'SUPER_DUPER'
| 'WICHMANN_HILL';
normal?: 'AHRENS_DIETER' | 'BOX_MULLER' | 'BUGGY_KINDERMAN_RAMAGE' | 'KINDERMAN_RAMAGE' | 'INVERSION';
sampleKind?: 'ROUNDING' | 'REJECTION';
};
The RNGkind
function is decorated with the following extra properties:
property | description | example |
---|
RNGkind.uniform | list of constants of uniform RNG's | RNGkind.uniform.MARSAGLIA_MULTICARRY is equal to the string "MARSAGLIA_MULTICARRY" |
RNGkind.normal | list of constants of normal RNG's | RNGkind.normal.KINDERMAN_RAMAGE is equal to the string "KINDERMAN_RAMAGE" |
RNGkind.sampleKind | list of sampling strategies | RNGkind.sampleKind.ROUNDING is equal to the string "ROUNDING" |
Example: set uniform RNG to SUPER_DUPER
and normal RNG to BOX_MULLER
import { RNGkind } from 'lib-r-math.js';
const uniform = RNGkind.uniform.SUPER_DUPER;
const normal = RNGkind.normal.BOX_MULLER;
RNGkind({ uniform, normal });
RNGkind();
setSeed
Uses a single value to initialize the internal state of the currently selected uniform RNG.
R console analog: set.seed
Rjs typescript decl
function setSeed(s: number): void;
Arguments:
s
is coerced to an unsigned 32 bit integer
randomSeed
R console analog: .Random.seed
Rjs typescript decl
function randomSeed(internalState?: Uint32Array | Int32Array): Uint32Array | Int32Array | never;
Arguments:
- (optional)
internalState
: the value of a previously saved RNG state, the current RNG state will be set to this. - return state of the current selected RNG
Exceptions:
- If the
internalState
value is not correct for the RNG selected an Error will be thrown.
Distributions
All distribution functions follow a prefix pattern:
d
(like dbeta
, dgamma
) are density functionsp
(like pbeta
, pgamma
) are (cumulative) distribution functionq
(like qbeta
, qgamma
) are quantile functionsr
(like rbeta/rbetaOne
, rgamma/rgammaOne
) generates random deviates
The Beta distribution
type | function spec |
---|
density function | function dbeta(x: number, shape1: number, shape2: number, ncp?: number, log = false): number |
distribution function | function pbeta(q: number, shape1: number, shape2: number, ncp?: number, lowerTail = true, logP = false): number |
quantile function | function qbeta(p: number, shape1: number, shape2: number, ncp?: number, lowerTail = true, logP = false): number |
random generation (bulk) | function rbeta(n: number, shape1: number, shape2: number, ncp?: number): Float32Array |
random generation | function rbetaOne(shape1: number, shape2: number): number |
- Arguments:
x, q
: quantile valuep
: probabilityn
: number of observationsshape1, shape2
: Shape parameters of the Beta distributionlog, logP
: if true
, probabilities are given as log(p)
.lowerTail
: if true
, probabilities are P[X ≤ x]
, otherwise, P[X > x]
.
Example:
import { dbeta } from 'lib-r-math.js';
dbeta(0.5, 2, 2);
The Binomial distribution
type | function spec |
---|
density function | function dbinom(x: number, n: number, prob: number, log = false): number |
distribution function | function pbinom(q: number, n: number, prob: number, lowerTail = true, logP = false): number |
quantile function | function qbinom(p: number, size: number, prob: number, lower_tail = true, logP = false): number |
random generation (bulk) | function rbinom(n: number, size: number, prob: number): Float64Array |
random generation | function rbinomOne(size: number, prob: number): number |
- Arguments:
x, q
: quantile valuep
: probabilityn
: number of observations.size
: number of trials (zero or more).prob
: probability of success on each trial.log, logP
: if true
, probabilities are given as log(p)
.lowerTail
: if true
, probabilities are P[X ≤ x]
, otherwise, P[X > x]
.
Example:
import { dbinom } from 'lib-r-math.js';
dbinom(50, 100, 0.5);
The Negative Binomial Distribution
type | function spec |
---|
density function | function dnbinom(x: number, size: number, prob?: number, mu?: number, log = false): number |
distribution function | function pnbinom(q: number, size: number, prob?: number, mu?: number, lowerTail = true, logP = false): number |
quantile function | function qnbinom(p: number, size: number, prob?: number, mu?: number, lowerTail = true, logP = false): number |
random generation (bulk) | function rnbinom(n: number, size: number, prob?: number, mu?: number): Float64Array |
random generation | function rnbinom(size: number, prob?: number, mu?: number): number |
Arguments:
x, q
: quantile value.p
: probability.n
: number of observations.size
: target for number of successful trials, (need not be integer) or dispersion parameter (the shape parameter of the gamma mixing distribution). Must be strictly positive.prob
: probability of success in each trial. 0 < prob <= 1
.mu
: alternative parametrization via mean: see ‘Details’.log, logP
: if true
, probabilities are given as log(p)
.lowerTail
: if true
, probabilities are P[X ≤ x]
, otherwise, P[X > x]
.
Details: R doc
A negative binomial distribution can also arise as a mixture of Poisson distributions with mean distributed as a gamma distribution (see pgamma) with scale parameter (1 - prob)/prob and shape parameter size. (This definition allows non-integer values of size.)
An alternative parametrization (often used in ecology) is by the mean mu
(see above), and size, the dispersion parameter, where prob = size/(size+mu)
. The variance is mu + mu^2/size
in this parametrization.
Example:
R console:
> options(digits=22)
> 126 / dnbinom(0:8, size = 2, prob = 1/2)
[1] 504.0000000000000000000 503.9999999999998863132 672.0000000000000000000 1008.0000000000001136868
[5] 1612.7999999999994997779 2688.0000000000013642421 4607.9999999999972715159 8064.0000000000000000000
[9] 14336.0000000000145519152
Equivalence in js (fidelity):
import { dnbinom } from 'lib-r-math.js';
console.log([0, 1, 2, 3, 4, 5, 6, 7, 8].map((x) => 126 / dnbinom(x, 2, 0.5)));
[
504, 503.9999999999999, 672, 1008.0000000000001, 1612.7999999999988, 2688.0000000000014, 4607.999999999997, 8064,
14336.000000000015
];
The Cauchy Distribution
type | function spec |
---|
density function | function dcauchy(x: number, location = 0, scale = 1, log = false): number |
distribution function | function pcauchy(x: number, location = 0, scale = 1, lowerTail = true, logP = false): number |
quantile function | function qcauchy(p: number, location = 0, scale = 1, lowerTail = true, logP = false): number |
random generation (bulk) | function rcauchy(n: number, location = 0, scale = 1): Float32Array |
random generation | function rcauchyOne(location = 0, scale = 1): number |
Arguments:
x, q
: quantile value.p
: probability.n
: number of observations.location, scale
: location and scale parameters.log, logP
: if true
, probabilities are given as log(p)
.lowerTail
: if true
, probabilities are P[X ≤ x]
, otherwise, P[X > x]
.
Examples
R console:
dcauchy(-1:4)
[1] 0.15915494309189534560822 0.31830988618379069121644 0.15915494309189534560822 0.06366197723675813546773
[5] 0.03183098861837906773387 0.01872411095198768526959
Equivalence in js (fidelity):
import { dcauchy } from 'lib-r-math.js';
console.log([-1, 0, 1, 2, 3, 4].map((x) => dcauchy(x)));
The Chi-Squared (non-central) Distribution
type | function spec |
---|
density function | function dchisq(x: number, df: number, ncp?: number, log = false ): number |
distribution function | function pchisq(p: number, df: number, ncp?: number, lowerTail = true, logP = false ): number |
quantile function | function qchisq(p: number, df: number, ncp?: number, lowerTail = true, logP = false ): number |
random generation (bulk) | function rchisq(n: number, df: number, ncp?: number): Float64Array |
random generation | function rchisqOne(df: number, ncp?: number): number |
Arguments:
x, q
: quantile.p
: probability.n
: number of observations.df
: degrees of freedom (non-negative, but can be non-integer).ncp
: non-centrality parameter (non-negative).log, logP
: if true
, probabily p are given as log(p).lowerTail
: if true`TRUE (default), probabilities are P[X \le x]P[X≤x], otherwise, P[X > x]P[X>x].
Examples
R console:
dchisq(1, df = 1:3)
[1] 0.2419707 0.3032653 0.2419707
Equivalence in js (fidelity):
import { dchisq } from 'lib-r-math.js';
console.log([1, 2, 3].map((df) => dchisq(1, df)));
The Exponential Distribution
type | function spec |
---|
density function | function dexp(x: number, rate = 1, log = false): number |
distribution function | function pexp(q: number, rate = 1, lowerTail = true, logP = false): number |
quantile function | function qexp(p: number, rate = 1, lowerTail = true, logP = false): number |
random generation (bulk) | function rexp(n: number, rate = 1):Float64Array |
random generation | function rexpOne(rate = 1): number |
Arguments:
x, q
: quantile.p
: probabily.n
: number of observations.rate
: the exp rate parameterlog, logP
: if true
, probabilities p
are given as log(p)
.lower.tail
: if true
(default), probabilities are P[ X ≤ x ], otherwise, P[X > x].
Examples
R console:
dexp(1) - exp(-1)
[1] 0
Equivalence in js (fidelity):
import { dexp } from 'lib-r-math.js';
console.log(dexp(1) - Math.exp(-1));
The F Distribution
type | function spec |
---|
density function | function df(x: number, df1: number, df2: number, ncp?: number, log = false): number |
distribution function | function pf(q: number, df1: number, df2: number, ncp?: number, lowerTail = true, logP = false): number |
quantile function | function qf(p: number, df1: number, df2: number, ncp?: number, lowerTail = true, logP = false): number |
random generation (bulk) | function rf(n: number, df1: number, df2: number, ncp?: number): Float64Array |
random generation | function rfOne(df1: number, df2: number, ncp?: number): number |
Arguments:
x, q
: quantile.p
: probabily.n
: number of observations.df1, df1
: degrees of freedom. Infinity
is allowed.ncp
: non-centrality parameter. If omitted the central F is assumed.log, logP
: if true
, probabilities p
are given as log(p)
.lowerTail
: if true
(default), probabilities are P[ X ≤ x ]
, otherwise, P[X > x]
S.
**NOTE: JS has no named arguments for functions, so specify ncp = undefined, if you want to change the log, logP, lowerTail
away from their defaults
Examples
R console:
n1 <- 7 ; n2 <- 12; qF <- c((0:4)/4, 1.5, 2:16)
x <- n2/(n2 + n1*qF)
stopifnot(all.equal(pf(qF, n1, n2, lower.tail=FALSE),
pbeta(x, n2/2, n1/2)))
Equivalence in js (fidelity):
import { pf, pbeta } from 'lib-r-math.js';
var qF = [
0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0
];
var n1 = 7;
var n2 = 12;
var xs = qF.map((qf) => n2 / (n2 + n1 * qf));
var betas = xs.map((x) => pbeta(x, n2 / 2, n1 / 2));
var fisher = qF.map((qf) => pf(qf, n1, n2, undefined , false));
console.log(fisher.map((f, i) => f - betas[i]));
The Gamma Distribution
type | function spec |
---|
density function | function dgamma(x: number, shape: number, rate?: number, scale?: number, log = false): number |
distribution function | function pgamma(q: number, shape: number, rate?: number, scale?: number, lowerTail = true, logP = false): number |
quantile function | function qgamma(p: number, shape: number, rate?: number, scale?: number, lowerTail = true, logP = false): number |
random generation (bulk) | function rgamma(n: number, shape: number, rate?: number, scale?: number): Float64Array |
random generation | function rgammaOne(shape: number, rate?: number, scale?: number): number |
Arguments:
x, q
: quantilep
: probabilityn
: number of observations.rate
: an alternative way to specify the scale.shape, scale
: shape and scale parameters. Must be positive, scale strictly.log, logP
: if true
, probabilities/densities p
are returned as log(p)
.lowerTail
: if true
(default), probabilities are P[ X ≤ x]
, otherwise, P[X > x]
.
Example:
R console:
-log(dgamma(1:4, shape = 1))
[1] 1 2 3 4
Equivalence in js (fidelity):
import { dgamma } from 'lib-r-math.js';
let dg = [1, 2, 3, 4].map((x) => Math.log(dgamma(x, 1)));
The Geometric Distribution
type | function spec |
---|
density function | function dgeom(x: number, p: number, log = false): number |
distribution function | function qgeom(p: number, prob: number, lowerTail = true, logP = false): number |
quantile function | function qgeom(p: number, prob: number, lowerTail = true, logP = false): number |
random generation (bulk) | function rgeom(n: number, prob: number): Float64Array |
random generation | function rgeomOne(p: number): number |
Arguments:
x, q
: quantilep
: probabilityn
: number of observations.prob
: probability of success in each trial. 0 < prob <= 1.log, logP
: if true
, probabilities/densities p
are returned as log(p)
.lowerTail
: if true
(default), probabilities are P[ X ≤ x]
, otherwise, P[X > x]
.
Example:
R console:
qgeom((1:9)/10, prob = .2)
[1] 0 0 1 2 3 4 5 7 10
Equivalence in js (fidelity):
import { qgeom } from 'lib-r-math.js';
let dg = [1, 2, 3, 4, 5, 6, 7, 8, 9].map((p) => p / 10).map((p) => qgeom(p, 0.2));
console.log(dg);
The Hypergeometric Distribution (Web Assembly accalerated)
type | function spec |
---|
density function | function dhyper(x: number, m: number, n: number, k: number, log = false): number |
distribution function | function phyper(q: number, m: number, n: number, k: number, lowerTail = true, logP = false): number |
quantile function | function qhyper(p: number, m: number, n: number, k: number, lowerTail = true, logP = false): number |
random generation (bulk) | function rhyper(nn: number, m: number, n: number, k: number): Float64Array |
random generation | function rhyperOne(m: number, n: number, k: number): number |
Arguments:
x, q
: quantilep
: probabilitym
: the number of white balls in the urn.n
: the number of black balls in the urn.k
: the number of balls drawn from the urn, hence must be in 0,1,…,m+n
.p
: probability, it must be between 0 and 1.nn
: number of observations.log, logP
: if true
, probabilities/densities p
are returned as log(p)
.lowerTail
: if true
(default), probabilities are P[ X ≤ x]
, otherwise, P[X > x]
.
Example:
R console:
m <- 10; n <- 7; k <- 8
x <- 0:(k+1)
rbind(phyper(x, m, n, k), dhyper(x, m, n, k))
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0 0.0004113534 0.01336898 0.117030 0.4193747 0.7821884 0.9635952 0.99814891 1.00000000 1
[2,] 0 0.0004113534 0.01295763 0.103661 0.3023447 0.3628137 0.1814068 0.03455368 0.00185109 0
Equivalence in js (fidelity):
import { phyper, dhyper } from "lib-r-math.js";
var m = 10;
var n = 7;
var k = 8;
var xs = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
console.log( ...xs.map( x => phyper(x, m, n, k)));
0 0.000411353352529823 0.01336898395721926 0.11703002879473474 0.4193747429041546 0.7821883998354585 0.9635952283011107 0.9981489099136158 1 1
console.log( ...xs.map( x => dhyper(x, m, n, k)));
0 0.000411353352529823 0.012957630604689437 0.10366104483751548 0.30234471410941993 0.3628136569313041 0.18140682846565206 0.03455368161250514 0.001851090086384205 0
Web Assembly backend
Use useWasmBackendHyperGeom
and clearBackendHyperGeom
to enable/disable wasm backend.
import {
useWasmBackendHyperGeom,
clearBackendHyperGeom,
qhyper
} from 'lib-r-math.js';
useWasmBackendHyperGeom();
qhyper(0.5, 2 ** 31 - 1, 2 ** 31 - 1, 2 ** 31 - 1);
clearBackendHyperGeom();
qhyper(0.5, 2 ** 31 - 1, 2 ** 31 - 1, 2 ** 31 - 1);
The Logistic Distribution
type | function spec |
---|
density function | function dlogis(x: number, location = 0, scale = 1, log = false): number |
distribution function | function plogis(x: number, location = 0, scale = 1, lowerTail = true, logP = false): number |
quantile function | function qlogis(p: number, location = 0, scale = 1, lowerTail = true, logP = false): number |
random generation (bulk) | function rlogis(n: number, location = 0, scale = 1): Float64Array |
random generation | function rlogisOne(location = 0, scale = 1): number |
Arguments:
x, q
: quantilep
: probabilitylocation, scale
: location and scale parameters.n
: number of observations.log, logP
: if true
, probabilities/densities p
are returned as log(p)
.lowerTail
: if true
(default), probabilities are P[ X ≤ x]
, otherwise, P[X > x]
.
Example:
R console:
> RNGkind()
[1] "Mersenne-Twister" "Inversion" "Rejection"
> set.seed(12345)
> var(rlogis(4000, 0, scale = 5))
[1] 80.83207
Equivalence in js (fidelity):
import { setSeed, RNGkind, rlogis } from 'lib-r-math.js';
const uniform = RNGkind.uniform.MERSENNE_TWISTER;
const normal = RNGkind.normal.INVERSION;
RNGkind({ uniform, normal });
setSeed(12345);
let samples = rlogis(4000, 0, 5);
const N = samples.length;
const µ = samples.reduce((sum, x) => sum + x, 0) / N;
const S = (1 / (N - 1)) * samples.reduce((sum, x) => sum + (x - µ) ** 2, 0);
console.log(S);
The Log Normal Distribution
type | function spec |
---|
density function | function dlnorm(x: number, meanlog = 0, sdlog = 1, log = false): number |
distribution function | function plnorm(q: number, meanlog = 0, sdlog = 1, lowerTail = true, logP = false): number |
quantile function | function qlnorm(p: number, meanlog = 0, sdlog = 1, lowerTail = true, logP = false): number |
random generation (bulk) | function rlnorm(n: number, meanlog = 0, sdlog = 1): Float32Array |
random generation | function rlnormOne(meanlog = 0, sdlog = 1): number |
Arguments:
x, q
: quantilep
: probabilitymeanlog, sdlog
: mean and standard deviation of the distribution on the log scale with default values of 0 and 1 respectively.n
: number of observations.log, logP
: if true
, probabilities/densities p
are returned as log(p)
.lowerTail
: if true
(default), probabilities are P[ X ≤ x]
, otherwise, P[X > x]
.
Examples:
R console:
dlnorm(1) == dnorm(0)
[1] TRUE
Equivalence in js (fidelity):
import { dlnorm, dnorm } from 'lib-r-math.js';
console.log(dlnorm(1) === dnorm(0));
The Multinomial Distribution
type | function spec |
---|
density function | function dmultinom(x: Float32Array, prob: Float32Array, log = false): number |
density function (R like) | function dmultinomLikeR(x: Float32Array, prob: Float32Array, log = false): number |
random generation (bulk) | function rmultinom(n: number, size: number, prob: Float64Array): Float64Array |
Arguments:
x
: quantilen
: number of random vectors to draw.size
:
- integer, say
N
, specifying the total number of objects that are put into K
boxes in the typical multinomial experiment. dmultinom
omit's the size
parameter (used in R version), see "Details" below for motivation.
prob
: numeric non-negative array of length K
, specifying the probability for the K
classes; is internally normalized to sum 1. Infinite and missing values are not allowed.log
: if true
, log probabilities are computed.
Motivation for removing size
argument from dmultinom
:
The code snippet shows clarification
N <- sum(x)
if (is.null(size))
size <- N
else if (size != N)
stop("size != sum(x), i.e. one is wrong")
Because of the above R code allowing manual setting of size
in dmultinom is omitted
Example:
R console:
> RNGkind()
[1] "Mersenne-Twister" "Inversion" "Rejection"
> set.seed(1234)
> rmultinom(10, size = 12, prob = c(0.1,0.2,0.8))
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0 1 2 0 1 1 0 0 0 0
[2,] 3 3 2 1 2 2 4 4 1 1
[3,] 9 8 8 11 9 9 8 8 11 11
>
Equivalence in js (fidelity):
import { RNGkind, setSeed, rmultinom } from 'lib-r-math.js';
RNGkind({
uniform: RNGkind.uniform.MERSENNE_TWISTER,
normal: RNGkind.normal.INVERSION
});
setSeed(1234);
const answer = rmultinom(10, 12, new Float64Array([0.1, 0.2, 0.8]));
console.log(...answer);
The Normal Distribution
type | function spec |
---|
density function | function dnorm(x: number, mean = 0, sd = 1, log = false): number |
distribution function | function pnorm(q: number, mean = 0, sd = 1, lowerTail = true, logP = false): number |
quantile function | function qnorm(p: number, mean = 0, sd = 1, lowerTail = true, logP = false): number |
random generation (bulk) | function rnorm(n: number, mean = 0, sd = 1): Float64Array |
random generation | function rnormOne(mean = 0, sd = 1): number |
Arguments:
x, q
: quantilep
: probabilitymean, sd
: mean and standard deviation.n
: number of observations.log, logP
: if true
, probabilities/densities p
are returned as log(p)
.lowerTail
: if true
(default), probabilities are P[ X ≤ x]
, otherwise, P[X > x]
.
Example:
R console:
dnorm(0) == 1/sqrt(2*pi)
[1] TRUE
dnorm(1) == exp(-1/2)/sqrt(2*pi)
[1] TRUE
dnorm(1) == 1/sqrt(2*pi*exp(1))
[1] TRUE
Equivalence in js:
import { dnorm } from 'lib-r-math.js';
const { sqrt, exp, PI: pi } = Math;
console.log(dnorm(1) === exp(-1 / 2) / sqrt(2 * pi));
console.log(dnorm(1) === exp(-1 / 2) / sqrt(2 * pi));
console.log(dnorm(1) === 1 / sqrt(2 * pi * exp(1)));
The Poisson distribution
type | function spec |
---|
density function | function dpois(x: number, lambda: number, log = false): number |
distribution function | function ppois(q: number,lambda: number, lowerTail = true, logP = false): number |
quantile function | function qpois(p: number, lambda: number, lowerTail = true, logP = false): number |
random generation (bulk) | function rpois(n: number, lamda: number): Float32Array |
random generation | function rpoisOne(lambda: number): number |
Arguments:
x, q
: quantile.p
: probability.lambda
: non-negative mean.n
: number of observations.log, logP
: if true
, probabilities/densities p
are returned as log(p)
.lowerTail
: if true
(default), probabilities are P[ X ≤ x]
, otherwise, P[X > x]
.
Example:
R console:
> options(digits=20)
> -log(dpois(0:7, lambda = 1) * gamma(1+ 0:7))
[1] 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000
[5] 0.99999999999999977796 1.00000000000000022204 1.00000000000000022204 1.00000000000000000000
Equivalence in js:
import { dpois, gamma } from 'lib-r-math.js';
const { log } = Math;
let arr = [0, 1, 2, 3, 4, 5, 6, 7];
let result = arr.map((x) => -log(dpois(x, 1) * gamma(x + 1)));
console.log(...result);
Distribution of the Wilcoxon Signed Rank Statistic
type | function spec |
---|
density function | function dsignrank(x: number, n: number, log = false): number |
distribution function | function psignrank(q: number, n: number, lowerTail = true, logP = false): number |
quantile function | function qsignrank(p: number, n: number, lowerTail = true, logP = false): number |
random generation (bulk) | function rsignrank(nn: number, n: number): Float64Array |
random generation | function rsignrank(nn, n): number |
Arguments:
x, q
: quantile.p
: probability.nn
: number of observations.n
: number of observations in the sample. A positive integer.log, logP
: if true
, probabilities/densities p
are returned as log(p)
.lowerTail
: if true
(default), probabilities are P[ X ≤ x]
, otherwise, P[X > x]
.
Examples:
R console:
> options(digits=20)
> x=seq(0,5*6/2)
> y=dsignrank(x, 5)
> data.frame(x,y)
x y
0 0.031250000000000000000
1 0.031250000000000000000
2 0.031250000000000000000
3 0.062500000000000000000
4 0.062500000000000000000
5 0.093749999999999986122
6 0.093749999999999986122
7 0.093749999999999986122
8 0.093749999999999986122
9 0.093749999999999986122
10 0.093749999999999986122
11 0.062500000000000000000
12 0.062500000000000000000
13 0.031250000000000000000
14 0.031250000000000000000
15 0.031250000000000000000
Equivalence in js:
import { dsignrank } from 'lib-r-math.js';
const N = 5;
for (let x = 0; x <= (N * (N + 1)) / 2; x++) {
console.log(x, dsignrank(x, N));
}
Output As Graphic:
Web Assembly backend
dsignrank
, psignrank
and qsignrank
have an optional Web Assembly backend, turn this backend on/off with useWasmBackendSignRank
and clearBackendSignRank
respectivily.
Example
import { useWasmBackendSignRank, clearBackendSignRank, psignrank } from 'lib-r-math.js';
useWasmBackendSignRank();
const p = psignrank(...);
clearBackendSignRank();
The Student t Distribution
type | function spec |
---|
density function | function dt(x: number, df: number, ncp = 0, log = false): number |
distribution function | function pt(q: number, df: number, ncp = 0, lowerTail = true, logP = false): number |
quantile function | function qt(p: number, df: number, ncp?: number, lowerTail = true, logP = false): number |
random generation (bulk) | function rt(n: number, df: number, ncp?: number): Float64Array |
random generation | function rtOne(df: number): number |
Arguments:
x, q
: quantile.p
: probability.n
: number of observations.df
: degrees of freedom (>0
, maybe non-integer). df = Inf
is allowed.ncp
: non-centrality parameter $\delta$; currently except for rt()
, only for abs(ncp) <= 37.62
. If omitted, use the central t distribution.log, logP
: if true
, probabilities/densities p
are returned as log(p)
.lowerTail
: if true
(default), probabilities are P[ X ≤ x]
, otherwise, P[X > x]
.
Example:
R console:
1 - pt(1:5, df = 1)
[1] 0.2499999999999998
[2] 0.1475836176504333
[3] 0.1024163823495667
[4] 0.0779791303773694
[5] 0.0628329581890011
Equivalence in js:
import { pt } from 'lib-r-math.js';
for (let q = 1; q <= 5; q++) {
console.log(1 - pt(q, 1));
}
The Studentized Range Distribution
type | function spec |
---|
distribution function | function ptukey(q: number, nmeans: number, df: number, nrnages = 1, lowerTail = true, logP = false): number |
quantile function | function qt(p: number, df: number, ncp?: number, lowerTail = true, logP = false): number |
Arguments:
q
: quantile.p
: probability.nmeans
: sample size for range (same for each group).df
: degrees of freedom for ss (see below).nranges
: number of groups whose maximum range is considered.log, logP
: if true
, probabilities/densities p
are returned as log(p)
.lowerTail
: if true
(default), probabilities are P[ X ≤ x]
, otherwise, P[X > x]
.
Example:
R console:
ptukey(-1:8, nm = 6, df = 5)
[1] 0.0000000000000000 0.0000000000000000 0.0272115020859732
[4] 0.2779845061609432 0.6007971569446733 0.8017143642776676
[7] 0.9014257065957741 0.9489495069295981 0.9721701726664311
[10] 0.9840420193770625
Equivalence in js:
import { ptukey } from 'lib-r-math.js';
function* generatePTukeyData() {
for (let q = -1; q <= 8; q++) {
yield ptukey(q, 6, 5);
}
}
console.log(...generatePTukeyData());
Output As Graphic:
The Uniform Distribution
type | function spec |
---|
density function | function dunif(x: number, min = 0, max = 1, log = false): number |
distribution function | function punif(q: number, min = 0, max = 1, lowerTail = true, logP = false): number |
quantile function | function qunif(p: number, min = 0, max = 1, lowerTail = true, logP = false): number |
random generation (bulk) | function runif(n: number, min = 0, max = 1): Float64Array |
random generation | function runifOne(min: number, max: number): number |
Arguments:
x,q
: quantile.p
: probability.min, max
: lower and upper limits of the distribution. Must be finite.n
: number of observations.log, logP
: if true
, probabilities/densities p
are returned as log(p)
.lowerTail
: if true
(default), probabilities are P[ X ≤ x]
, otherwise, P[X > x]
.
Example:
R console:
> RNGkind()
[1] "Mersenne-Twister" "Inversion" "Rejection"
> set.seed(12345)
> runif(5)
[1] 0.720903896261007 0.875773193081841 0.760982328327373 0.886124566197395
[5] 0.456480960128829
Equivalence in js:
import { RNGkind, setSeed, runif } from 'lib-r-math.js';
const uniform = RNGkind.uniform.MERSENNE_TWISTER;
const normal = RNGkind.normal.INVERSION;
RNGkind({ uniform, normal });
setSeed(12345);
console.log(...runif(5));
The Weibull Distribution
type | function spec |
---|
density function | function dweibull(x: number, shape: number, scale = 1, log = false): number |
distribution function | function pweibull(q: number, shape: number, scale = 1, lowerTail = true, logP = false): number |
quantile function | function qweibull(p: number, shape: number, scale = 1, lowerTail = true, logP = false): number |
random generation (bulk) | function rweibull(n: number, shape: number, scale = 1): Float64Array |
random generation | function rweibullOne(shape: number, scale = 1): number |
Arguments:
x,q
: quantile.p
: probability.n
: number of observations.shape, scale
: shape and scale parameters, the latter defaulting to 1.log, logP
: if true
, probabilities/densities p
are returned as log(p)
.lowerTail
: if true
(default), probabilities are P[ X ≤ x]
, otherwise, P[X > x]
.
Example:
R console:
x <- c(0, rlnorm(50))
all.equal(dweibull(x, shape = 1), dexp(x))
Equivalence in js:
import { rlnorm, dweibull, dexp } from 'lib-r-math.js';
const samples = rlnorm(50);
const violation = samples.find((x) => dweibull(x, 1) !== dexp(x));
console.log(violation);
Distribution of the Wilcoxon Rank Sum Statistic
type | function spec |
---|
density function | function dwilcox(x: number, m: number, n: number, log = false): number |
distribution function | function pwilcox(q: number, m: number, n: number, lowerTail = true, logP = false): number |
quantile function | function qwilcox(x: number, m: number, n: number, lowerTail = true, logP = false): number |
random generation (bulk) | function rwilcox(nn: number, m: number, n: number): Float32Array |
random generation | function rwilcoxOne(m: number, n: number): number |
Arguments:
x, q
: quantile.p
: probability.nn
: number of observations.m, n
: numbers of observations in the first and second sample, respectively.log, logP
: if true
, probabilities/densities p
are returned as log(p)
.lowerTail
: if true
(default), probabilities are P[ X ≤ x]
, otherwise, P[X > x]
.
Example:
R console:
> x <- seq(-1, (4*6 + 1), 4);
> fx = dwilcox(x,4,6)
> fx
[1] 0.00000000000000000 0.01428571428571429 0.04761904761904762 0.07619047619047620 0.06666666666666667
[6] 0.02857142857142857 0.00476190476190476
Equivalence in js:
import { dwilcox } from 'lib-r-math.js';
for (let x = -1; x <= 4 * 6 + 1; x += 4) {
console.log(dwilcox(x, 4, 6));
}
Special Functions of Mathematics
Special functions are particular mathematical functions which have more or less established names and notations due to their importance in mathematical analysis, functional analysis, physics, or other applications.
There is no general formal definition, but the list of mathematical functions contains functions which are commonly accepted as special.
Bessel functions
Bessel Functions of integer and fractional order, of first and second kind, $J_{\nu}$ and $Y_{\nu}$, and Modified Bessel functions (of first and third kind), $I_{\nu}$ and $K_{\nu}$.
type | function spec |
---|
Modified Bessel function of the first kind $I_{\nu}$ | function BesselI(x: number, nu: number, exponScaled = false): number |
Modified Bessel function of the third kind $K_{\nu}$ | function BesselK(x: number, nu: number, exponScaled = false): number |
Bessel function of the first kind $J_{\nu}$ | function BesselJ(x: number, nu: number): number |
Bessel function of the second kind $Y_{\nu}$ | function BesselY(x: number, nu: number): number |
Arguments:
x
: must be ≥ 0.nu
: The order (maybe fractional and negative) of the corresponding Bessel function.exponScaled
: if true
, the results are exponentially scaled in order to avoid overflow ( $I_{\nu}$ ) or underflow ( $K_{\nu}$ ), respectively.
Details:
If exponScaled = true
, $e^{-x} \cdot I_{\nu}(x)$ or $e^{x} \cdot K_{\nu}(x)$ are returned.
For $\nu < 0$, formulae 9.1.2 and 9.6.2 from Abramowitz & Stegun are applied (which is probably suboptimal), except for besselK
which is symmetric in nu
.
The current algorithms will give warnings about accuracy loss for large arguments. In some cases, these warnings are exaggerated, and the precision is perfect. For large nu
, say in the order of millions, the current algorithms are rarely useful.
Example:
R console:
> data.frame(besselI(0, 0:4), besselI(1, 0:4), besselI(2, 0:4), besselI(3, 0:4), besselI(4, 0:4))
besselI.0..0.4. besselI.1..0.4. besselI.2..0.4. besselI.3..0.4. besselI.4..0.4.
1 1 1.26606587775200818 2.2795853023360673 4.880792585865024 11.30192195213633
2 0 0.56515910399248503 1.5906368546373291 3.953370217402609 9.75946515370445
3 0 0.13574766976703828 0.6889484476987382 2.245212440929951 6.42218937528411
4 0 0.02216842492433190 0.2127399592398526 0.959753629496008 3.33727577842035
5 0 0.00273712022104687 0.0507285699791802 0.325705181937935 1.41627570765359
Equivalence in js:
import { BesselI } from 'lib-r-math.js';
for (let nu = 0; nu <= 4; nu++) {
const row = [0, 1, 2, 3, 4].map((x) => BesselI(x, nu) + '\t');
console.log(...row);
}
Beta functions
The functions beta
and lbeta
return the beta function and the natural logarithm of the beta function,
type | function spec |
---|
beta function | function beta(a: number, b: number): number |
logarithem of the beta function | function lbeta(a: number, b: number): number |
Arguments:
a, b
: non negative values quantile.
The formal definition is
$$ B(a, b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt $$
(Abramowitz and Stegun section 6.2.1, page 258). Note that it is only defined in R for non-negative a and b, and is infinite if either is zero.
No examples provided, usage is straightforward
Gamma functions
type | function spec |
---|
gamma function $\Gamma(x) = \int_{0}^{\infty}t^{x-1}e^{-t}dt$ | function gamma(x: number): number |
natural logarithm of the $\Gamma(x)$ function | function lgamma(x: number, sgn?: Int32Array) |
Arguments:
x
: number, can be negative.sgn
: (optional) an array, if provided, will have its first element set to the sign of x
Polygamma functions
type | function spec |
---|
first derivative of the logarithm of the gamma function $\Psi_{0}(x) = \frac{\Gamma^{\prime}(x)}{\Gamma(x)}$ | function digamma(x: number): number |
second derivative of the logarithm of the gamma function $\Psi_{1}(x) = \frac{d^2}{dx^2}ln\Gamma(x)$ | function trigamma(x: number): number |
third derivative of the logarithm of the gamma function $\Psi_{2}(x) = \frac{d^3}{dx^3}ln\Gamma(x)$ | function tetragamma(x: number): number |
forth derivative of the logarithm of the gamma function $\Psi_{3}(x) = \frac{d^4}{dx^4}ln\Gamma(x)$ | function pentagamma(x: number): number |
Nth derivative of the logarithm of the gamma function $\Psi_{n-1}(x) = \frac{d^n}{dx^n}ln\Gamma(x)$ | function psigamma(x: number, deriv: number): number |
Arguments:
x
: number, can be negative.deriv
: >= 0
,
deriv = 0
computes the first derivative $\Psi_{0}(x) = \frac{\Gamma^{\prime}(x)}{\Gamma(x)}$deriv = 1
computes the second derivative of the logarithm of the gamma function $\Psi_{1}(x) = \frac{d^2}{dx^2}ln\Gamma(x)$deriv = N
computes the (N+1)
th derivative of the logarithm of the gamma function $\Psi_{n}(x) = \frac{d^n}{dx^n}ln\Gamma(x)$
Binomial coefficient functions
type | function spec |
---|
binomial coefficient ${n}\choose{k}$ | function choose(n: number, k: number): number |
natural log of $\left|{n}\choose{k}\right|$ | function lchoose(n: number, k: number): number |
Arguments:
n,k
: "n over k".- For $ k \ge 1 $ it is defined as $ \frac{n(n-1)\cdots(n-k+1)}{k!} $.
- For $k=0$ it is defined as 1.
- For $k \lt 0$, it is defined as 0.