math-codegen
Generates JavaScript code from mathematical expressions
Table of Contents generated with DocToc
Description
A flexible interpreter for mathematical expressions which allows the programmer to change the usual semantic of an
operator bringing the operator overloading polymorphism to JavaScript (emulated with function calls),
in addition an expression can be evaluated under any adapted namespace providing expression portability between numeric libraries
NOTE: still a work on progress
Lifecycle
parse
a mathematical expression is parsed with Esprimacompile
the parsed string is compiled against a namespace producing executable JavaScript codeeval
the executable JavaScript code is evaluated against a context
Parse
For example let's consider the following expression with the variable x
which is user defined:
'1 + 2 * x'
the expression can be emulated with function calls instead of operators (the parser identifies the addition and multiplication
expression as Binary Expressions)
'add(1, multiply(2, x))'
now we can introduce the namespace ns
where add
and multiply
come from
'ns.add(1, ns.multiply(2, x))'
the variables (which for the parser are Identifiers)
come from a context called scope
but they might also be constant values defined in the namespace:
'ns.add(1, ns.multiply(2, (scope["x"] || ns["x"]) ))'
the constant values might have different meanings for different namespaces therefore a factory
is needed
on the namespace to transform these values into values the namespace can operate with
'ns.add(ns.factory(1), ns.multiply(ns.factory(2), (scope["x"] || ns["x"]) ))'
Compile
Now that we have a parsed expression we have to compile it against a namespace to produce
executable JavaScript code
parse('1 + 2 * x').compile(namespace)
(function (ns) {
return {
eval: function (scope) {
}
}
})(namespace)
Eval
The object returned above can be evaluated within a context
parse('1 + 2 * x').compile(namespace).eval(scope)
Differences with math.js expression parser
Math.js expression parser API is quite similar having the same lifecycle however there are some
important facts I've found:
math.js
has a custom expression parser (which means it has additional types of nodes),
math-codegen
uses Esprima which support the ES5 grammar only
(ESTree AST nodes)math.js
v1.x arrays can represent matrices with ns.matrix
or as a raw arrays, math-codegen
doesn't
make any assumptions of the arrays and treats them just like any other literal allowing the namespace to
decide what to do with an array in its factory
method
Install
$ npm install --save math-codegen
Usage
var CodeGenerator = require('math-codegen');
new CodeGenerator([options]).parse(code).compile(namespace).eval(scope)
API
var instance = new CodeGenerator([options])
properties
statements
{Array} An array of statements parsed from an expressioninterpreter
{Interpreter} Instance of the Interpreter classdefs
{Object} An object with additional definitions available during the compilation
that exist during the instance lifespan
params
options
{Object} Options available for the interpreter
[options.factory="ns.factory"]
{string} factory method under the namespace[options.raw=false]
{boolean} True to interpret BinaryExpression, UnaryExpression and ArrayExpression
in a raw way without wrapping the operators with identifiers, e.g. -1
will be compiled as
-1
instead of ns.negative(ns.factory(1))
[options.rawArrayExpressionElements=true]
{boolean} true to interpret the array elements in a raw way[options.rawCallExpressionElements=false]
{boolean} true to interpret call expression
elements in a raw way
instance.parse(code)
chainable
params
code
{string} string to be parsed
Parses a program using Esprima, each Expression Statement is saved in
instance.statements
Node types implemented:
- Nodes:
- Expressions:
- Misc:
- Identifiers, identifier
resolution follows this order:
- namespace
- scope
- definitions stored in
instance.defs
- Literals
instance.compile(namespace)
chainable
params
Compiles the code making namespace
's properties available during evaluation
returns {Object}
return.eval
{Function} Function to be evaluated under a context
params
instance.setDefs(defs)
params
An object whose properties will be available during evaluation, properties can be accessed by
the property name in the program
Examples
built-in math
var numeric = {
factory: function (a) {
return Number(a);
},
add: function (a, b) {
return a + b;
},
mul: function (a, b) {
return a * b;
}
};
var instance = new CodeGenerator()
.parse('1 + 2 * x')
.compile(numeric);
instance.eval({x : 3});
imaginary
var instance = new CodeGenerator();
var imaginary = {
factory: function (a) {
if (typeof a === 'number') {
return [a, 0];
}
return [a[0] || 0, a[1] || 0];
},
add: function (a, b) {
var re = a[0] + b[0];
var im = a[1] + b[1];
return [re, im];
},
mul: function (a, b) {
var re = a[0] * b[0] - a[1] * b[1];
var im = a[0] * b[1] + a[1] * b[0];
return [re, im];
}
};
instance
.parse('1 + 2 * x')
.compile(imaginary)
.eval({x : [1, 1]})
instance
.parse('[1, 0] + [2, 0] * x')
.compile(imaginary)
.eval({x : [1, 1]});
interval arithmetic
var interval = {
factory: function (a) {
if (typeof a === 'number') {
return [a, a];
}
return a;
},
add: function (x, y) {
return [x[0] + y[0], x[1] + y[1]];
},
mul: function (x, y) {
var ac = x[0] * y[0];
var ad = x[0] * y[1];
var bc = x[1] * y[0];
var bd = x[1] * y[1];
return [Math.min(ac, ad, bc, bd), Math.max(ac, ad, bc, bd)];
}
};
var instance = new CodeGenerator()
.parse('1 + 2 * x')
.compile(interval)
.eval({x : [-1, 2]});
Inspiration projects
License
2015 MIT © Mauricio Poppe