math-codegen
Generates JavaScript code from mathematical expressions
Table of Contents * generated with DocToc *
Description
An interpreter for mathematical expressions which allows the programmer to change the usual semantic of an
operator bringing the operator overloading polymorphism to JavaScript (emulated with function calls),
in addition an expression can be evaluated under any adapted namespace providing expression portability between numeric libraries
Lifecycle
parse
: a mathematical expression is parsed with mr-parse
, in the ideal scenario
it would use math.js expression parser however it's not modularized yet
and including all math.js is just an overkill, probably mr-parse
will be replaced with math.js expression parser when
it reaches npm as a module :)compile
: the parsed string is compiled against a namespace producing executable JavaScript codeeval
: the executable JavaScript code is evaluated against a context
Parse
For example let's consider the following expression with the variable x
which is defined by the user:
'1 + 2 * x'
the expression can be emulated with function calls instead of operators, math-codegen will map many mathematical
operators to callable methods
'add(1, mul(2, x))'
now we can introduce the namespace ns
where add
and multiply
come from
'ns.add(1, ns.mul(2, x))'
the variables (which for the parser are symbols
come from a context called scope
but they might also be constant values defined in the namespace:
'ns.add(1, ns.mul(2, (scope["x"] || ns["x"]) ))'
the constant values might have different meanings for different namespaces therefore a factory
is needed
on the namespace to transform these values into values the namespace can operate with
'ns.add(ns.factory(1), ns.mul(ns.factory(2), (scope["x"] || ns["x"]) ))'
Compile
Now that we have a parsed expression we have to compile it against a namespace to produce
executable JavaScript code
parse('1 + 2 * x').compile(namespace)
(function (definitions) {
var ns = definitions.namespace
return {
eval: function (scope) {
return ns.add(ns.factory(1), ns.mul(ns.factory(2), (scope["x"] || ns["x"]) ))
}
}
})(definitions)
Eval
The object returned above can be evaluated within a context
parse('1 + 2 * x').compile(namespace).eval(scope)
Differences with math.js expression parser
Math.js expression parser API is quite similar having the same lifecycle however there are some
important facts I've found:
math.js
v1.x arrays can represent matrices with ns.matrix
or as a raw arrays, math-codegen
doesn't
make any assumptions of the arrays and treats them just like any other literal allowing the namespace to
decide what to do with an array in its factory
method
Operators
The following operators recognized by mr-parser
are named as follows when compiled
'+': 'add'
'-': 'sub'
'*': 'mul'
'/': 'div'
'^': 'pow'
'%': 'mod'
'!': 'factorial'
'|': 'bitwiseOR'
'^|': 'bitwiseXOR'
'&': 'bitwiseAND'
'||': 'logicalOR'
'xor': 'logicalXOR'
'&&': 'logicalAND'
'<': 'lessThan'
'>': 'greaterThan'
'<=': 'lessEqualThan'
'>=': 'greaterEqualThan'
'===': 'strictlyEqual'
'==': 'equal'
'!==': 'strictlyNotEqual'
'!=': 'notEqual'
'>>': 'shiftRight'
'<<': 'shiftLeft'
'>>>': 'unsignedRightShift'
'+': 'positive'
'-': 'negative'
'~': 'oneComplement'
Install
$ npm install --save math-codegen
Usage
var CodeGenerator = require('math-codegen');
new CodeGenerator([options]).parse(code).compile(namespace).eval(scope)
API
var instance = new CodeGenerator([options])
properties
statements
{Array} An array of statements parsed from an expressioninterpreter
{Interpreter} Instance of the Interpreter classdefs
{Object} An object with additional definitions available during the compilation
that exist during the instance lifespan
params
options
{Object} Options available for the interpreter
[options.factory="ns.factory"]
{string} factory method under the namespace[options.raw=false]
{boolean} True to interpret OperatorNode, UnaryNode and ArrayNode
in a raw way without wrapping the operators with identifiers e.g. -1
will be compiled as
-1
instead of ns.negative(ns.factory(1))
[options.rawArrayExpressionElements=true]
{boolean} true to interpret the array elements in a raw way[options.rawCallExpressionElements=false]
{boolean} true to interpret call expression[options.applyFactoryToScope=false]
{boolean} true to apply the factory function on non-function values of the scope/namespace
instance.parse(code)
chainable
params
code
{string} string to be parsed
Parses a program using mr-parse
, each Expression Statement is saved in
instance.statements
The documentation for the available nodes is described in mr-parse
instance.compile(namespace)
chainable
params
Compiles the code making namespace
's properties available during evaluation, it's required
to have the factory
property defined
returns {Object}
return.code
{string} the body of the function to be evaluated with eval
return.eval
{Function} Function to be evaluated under a context
params
instance.setDefs(defs)
params
An object whose properties will be available during evaluation, properties can be accessed by
the property name in the program
Examples
built-in math
'use strict'
var CodeGenerator = require('math-codegen')
var numeric = {
factory: function (a) { return a },
add: function (a, b) { return a + b },
mul: function (a, b) { return a * b }
}
new CodeGenerator()
.parse('1 + 2 * x')
.compile(numeric)
.eval({x: 3})
)
imaginary
'use strict'
var CodeGenerator = require('math-codegen')
var imaginary = {
factory: function (a) {
if (typeof a === 'number') {
return [a, 0]
}
return [a[0] || 0, a[1] || 0]
},
add: function (a, b) {
var re = a[0] + b[0]
var im = a[1] + b[1]
return [re, im]
},
mul: function (a, b) {
var re = a[0] * b[0] - a[1] * b[1]
var im = a[0] * b[1] + a[1] * b[0]
return [re, im]
}
}
var instance = new CodeGenerator()
instance
.parse('1 + 2 * x')
.compile(imaginary)
.eval({x : [1, 1]})
instance
.parse('[1, 0] + [2, 0] * x')
.compile(imaginary)
.eval({x : [1, 1]});
interval arithmetic
'use strict'
var CodeGenerator = require('math-codegen')
var interval = {
factory: function (a) {
if (typeof a === 'number') {
return [a, a]
}
return [a[0], a[1]]
},
add: function (x, y) {
return [x[0] + y[0], x[1] + y[1]]
},
mul: function (x, y) {
var ac = x[0] * y[0]
var ad = x[0] * y[1]
var bc = x[1] * y[0]
var bd = x[1] * y[1]
return [Math.min(ac, ad, bc, bd), Math.max(ac, ad, bc, bd)]
}
}
var instance = new CodeGenerator()
instance
.parse('1 + 2 * x')
.compile(interval)
.eval({x: [-1, 2]})
Inspiration projects
License
2015 MIT © Mauricio Poppe