mitata
benchmark tooling that loves you ❤️
Install
bun add mitata
npm install mitata
Recommendations
- use dedicated hardware for running benchmarks
- run with garbage collection enabled (e.g.
node --expose-gc ...
) - make sure your runtime has high-resolution timers and other relevant options/permissions enabled
Quick Start
javascript | c++ single header |
---|
import { run, bench, boxplot } from 'mitata';
function fibonacci(n) {
if (n <= 1) return n;
return fibonacci(n - 1) + fibonacci(n - 2);
}
bench('fibonacci(40)', () => fibonacci(40));
boxplot(() => {
bench('new Array($size)', function* (state) {
const size = state.get('size');
yield () => Array.from({ length: size });
}).range('size', 1, 1024);
});
await run();
|
#include "src/mitata.hpp"
int fibonacci(int n) {
if (n <= 1) return n;
return fibonacci(n - 1) + fibonacci(n - 2);
}
int main() {
mitata::runner runner;
runner.bench("noop", []() { });
runner.summary([&]() {
runner.bench("empty fn", []() { });
runner.bench("fibonacci", []() { fibonacci(20); });
});
auto stats = runner.run();
}
|
configure your experience
import { run } from 'mitata';
await run({ format: 'mitata', colors: false });
await run({ filter: /new Array.*/ })
await run({ throw: true });
auto stats = runner.run({ .colors = true, .format = "mitata", .filter = std::regex(".*") });
automatic garbage collection
On runtimes that expose gc (e.g. bun, node --expose-gc ...
), mitata will automatically run garbage collection before each benchmark.
universal compatibility
Out of box mitata can detect engine/runtime it's running on and fall back to using alternative non-standard I/O functions. If your engine or runtime is missing support, open an issue or pr requesting for support.
argumentizing your benchmarks has never been so easy
With other benchmarking libraries, often it's quite hard to easily make benchmarks that go over a range or run the same function with different arguments without writing spaghetti code, but now with mitata converting your benchmark to use arguments is just a function call away.
import { bench } from 'mitata';
bench(function* look_mom_no_spaghetti(state) {
const len = state.get('len');
const len2 = state.get('len2');
yield () => new Array(len * len2);
})
.args('len', [1, 2, 3])
.range('len', 1, 1024)
.dense_range('len', 1, 100)
.args({ len: [1, 2, 3], len2: ['4', '5', '6'] })
helpful warnings
For those who love doing micro-benchmarks, mitata can automatically detect and inform you about optimization passes like dead code elimination without requiring any special engine flags.
-------------------------------------- -------------------------------
1 + 1 318.63 ps/iter 325.37 ps ▇ █ !
(267.92 ps … 14.28 ns) 382.81 ps ▁▁▁▁▁▁▁█▁▁█▁▁▁▁▁▁▁▁▁▁
empty function 319.36 ps/iter 325.37 ps █ ▅ !
(248.62 ps … 46.61 ns) 382.81 ps ▁▁▁▁▁▁▃▁▁█▁█▇▁▁▁▁▁▁▁▁
! = benchmark was likely optimized out (dead code elimination)
powerful visualizations right in your terminal
with mitata’s ascii rendering capabilities, now you can easily visualize samples in barplots, boxplots, lineplots, histograms, and get clear summaries without any additional tools or dependencies.
-------------------------------------- -------------------------------
1 + 1 318.11 ps/iter 325.37 ps ▇ █ !
(267.92 ps … 11.14 ns) 363.97 ps ▁▁▁▁▁▁▁▁█▁▁▁█▁▁▁▁▁▁▁▁
Date.now() 27.69 ns/iter 27.48 ns █
(27.17 ns … 44.10 ns) 32.74 ns ▃█▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
┌ ┐
1 + 1 ┤■ 318.11 ps
Date.now() ┤■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 27.69 ns
└ ┘
-------------------------------------- -------------------------------
Bubble Sort 2.11 ms/iter 2.26 ms █
(1.78 ms … 6.93 ms) 4.77 ms ▃█▃▆▅▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
Quick Sort 159.60 µs/iter 154.50 µs █
(133.13 µs … 792.21 µs) 573.00 µs ▅█▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
Native Sort 97.20 µs/iter 97.46 µs ██
(90.88 µs … 688.92 µs) 105.00 µs ▁▁▂▁▁▂▇██▇▃▃▃▃▃▂▂▂▁▁▁
┌ ┐
╷┌─┬─┐ ╷
Bubble Sort ├┤ │ ├───────────────────────┤
╵└─┴─┘ ╵
┬ ╷
Quick Sort │───┤
┴ ╵
┬
Native Sort │
┴
└ ┘
90.88 µs 2.43 ms 4.77 ms
-------------------------------------- -------------------------------
new Array(1) 3.57 ns/iter 3.20 ns 6.64 ns ▁█▄▂▁▁▁▁▁▁
new Array(8) 5.21 ns/iter 4.31 ns 8.85 ns ▁█▄▁▁▁▁▁▁▁
new Array(64) 17.94 ns/iter 13.40 ns 171.89 ns █▂▁▁▁▁▁▁▁▁
new Array(512) 188.05 ns/iter 246.88 ns 441.81 ns █▃▃▃▃▂▂▁▁▁
new Array(1024) 364.93 ns/iter 466.91 ns 600.34 ns █▄▁▁▁▅▅▃▂▁
Array.from(1) 29.73 ns/iter 29.24 ns 36.88 ns ▁█▄▃▂▁▁▁▁▁
Array.from(8) 33.96 ns/iter 32.99 ns 42.45 ns ▂█▄▂▂▁▁▁▁▁
Array.from(64) 146.52 ns/iter 143.82 ns 310.93 ns █▅▁▁▁▁▁▁▁▁
Array.from(512) 1.11 µs/iter 1.18 µs 1.34 µs ▃▅█▂▆▅▄▂▂▁
Array.from(1024) 1.98 µs/iter 2.09 µs 2.40 µs ▃█▃▃▇▇▄▂▁▁
summary
new Array($len)
5.42…8.33x faster than Array.from($len)
┌ ┐
Array.from($size) ⢠⠊
new Array($size) ⢀⠔⠁
⡠⠃
⢀⠎
⡔⠁
⡠⠊
⢀⠜
⡠⠃
⡔⠁
⢀⠎
⡠⠃
⢀⠜
⢠⠊ ⣀⣀⠤⠤⠒
⡰⠁ ⣀⡠⠤⠔⠒⠊⠉
⣀⣀⣀⠤⠜ ⣀⡠⠤⠒⠊⠉
⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣔⣒⣒⣊⣉⠭⠤⠤⠤⠤⠤⠒⠊⠉
└ ┘
give your own code power of mitata
In case you don’t need all the fluff that comes with mitata or just need raw results, mitata exports its fundamental building blocks to allow you to easily build your own tooling and wrappers without losing any core benefits of using mitata.
#include "src/mitata.hpp"
int main() {
auto stats = mitata::lib::fn([]() { })
}
import { B, measure } from 'mitata';
const stats = await measure(function* (state) {
const size = state.get('x');
yield () => new Array(size);
}, {
args: { x: 1 },
batch_samples: 5 * 1024,
min_cpu_time: 1000 * 1e6,
});
console.log(stats.debug)
const b = new B('new Array($x)', state => {
const size = state.get('x');
for (const _ of state) new Array(size);
}).args('x', [1, 5, 10]);
const trial = await b.run();
accuracy down to picoseconds
mitata pushes the limits of javascript with jit-generated zero-overhead measurement loops to provide high-resolution timings. This allows providing features like cpu clock frequency and dead code detection without requiring access outside the js sandbox.
clk: ~3.13 GHz
cpu: Apple M2 Pro
runtime: node 22.8.0 (arm64-darwin)
benchmark avg (min … max) p75 p99 (min … top 1%)
-------------------------------------- -------------------------------
noop 93.09 ps/iter 91.55 ps █ !
(61.04 ps … 20.30 ns) 101.81 ps ▁▁▁▁▁▁▁▁▁▁▂▁▁▁▁█▁▁▁▁▂
! = benchmark was likely optimized out (dead code elimination)
16041.00 ns/iter - node:perf_hooks (performance.timerify)
5.30 ns/iter - https:
noop x 188,640,251 ops/sec ±5.71% (73 runs sampled)
36.62 ns/iter - https:
┌─────────┬───────────┬──────────────┬───────────────────┬──────────┬──────────┐
│ (index) │ Task Name │ ops/sec │ Average Time (ns) │ Margin │ Samples │
├─────────┼───────────┼──────────────┼───────────────────┼──────────┼──────────┤
│ 0 │ 'noop' │ '27,308,739' │ 36.61831406333669 │ '±0.14%' │ 13654370 │
└─────────┴───────────┴──────────────┴───────────────────┴──────────┴──────────┘
156.5685 ns/iter - https:
╔══════════════╤═════════╤═══════════════════╤═══════════╗
║ Slower tests │ Samples │ Result │ Tolerance ║
╟──────────────┼─────────┼───────────────────┼───────────╢
║ Fastest test │ Samples │ Result │ Tolerance ║
╟──────────────┼─────────┼───────────────────┼───────────╢
║ noop │ 10000 │ 6386980.78 op/sec │ ± 1.85 % ║
╚══════════════╧═════════╧═══════════════════╧═══════════╝
same test with v8 jit compiler disabled:
clk: ~0.06 GHz
cpu: Apple M2 Pro
runtime: node 22.8.0 (arm64-darwin)
benchmark avg (min … max) p75 p99 (min … top 1%)
-------------------------------------- -------------------------------
noop 14.69 ns/iter 15.09 ns ▃▅▇▇▇█▅▄▂ !
(13.33 ns … 19.69 ns) 16.24 ns ▁▄▅▇███████████▆▅▄▃▂▂
! = benchmark was likely optimized out (dead code elimination)
17500.00 ns/iter - node:perf_hooks (performance.timerify)
23.28 ns/iter - https:
noop x 42,952,144 ops/sec ±0.87% (98 runs sampled)
184.92 ns/iter - https:
┌─────────┬───────────┬─────────────┬────────────────────┬──────────┬─────────┐
│ (index) │ Task Name │ ops/sec │ Average Time (ns) │ Margin │ Samples │
├─────────┼───────────┼─────────────┼────────────────────┼──────────┼─────────┤
│ 0 │ 'noop' │ '5,407,742' │ 184.92003948393378 │ '±0.02%' │ 2703872 │
└─────────┴───────────┴─────────────┴────────────────────┴──────────┴─────────┘
659.9353333333333 ns/iter - https:
╔══════════════╤═════════╤═══════════════════╤═══════════╗
║ Slower tests │ Samples │ Result │ Tolerance ║
╟──────────────┼─────────┼───────────────────┼───────────╢
║ Fastest test │ Samples │ Result │ Tolerance ║
╟──────────────┼─────────┼───────────────────┼───────────╢
║ noop │ 1500 │ 1515299.98 op/sec │ ± 0.72 % ║
╚══════════════╧═════════╧═══════════════════╧═══════════╝
License
MIT © Evan