Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

ml-airpls

Package Overview
Dependencies
Maintainers
4
Versions
6
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

ml-airpls - npm Package Compare versions

Comparing version 1.0.2 to 1.0.3

7

lib/index.js

@@ -365,3 +365,3 @@ 'use strict';

* @param {number} [options.maxIterations = 100] - Maximal number of iterations if the method does not reach the stop criterion
* @param {number} [options.factorCriterion = 0.001] - Factor of the sum of absolute value of original data, to compute stop criterion
* @param {number} [options.tolerance = 0.001] - Factor of the sum of absolute value of original data, to compute stop criterion
* @param {Array<number>} [options.weights = [1,1,...]] - Initial weights vector, default each point has the same weight

@@ -377,3 +377,3 @@ * @param {number} [options.lambda = 100] - Factor of weights matrix in -> [I + lambda D'D]z = x

lambda = 100,
factorCriterion = 0.001,
tolerance = 0.001,
weights = new Array(y.length).fill(1),

@@ -402,4 +402,3 @@ controlPoints = [],

let sumNegDifferences = Number.MAX_SAFE_INTEGER;
let stopCriterion =
factorCriterion * y.reduce((sum, e) => Math.abs(e) + sum, 0);
let stopCriterion = tolerance * y.reduce((sum, e) => Math.abs(e) + sum, 0);

@@ -406,0 +405,0 @@ let { lowerTriangularNonZeros, permutationEncodedArray } = getDeltaMatrix(

{
"name": "ml-airpls",
"version": "1.0.2",
"version": "1.0.3",
"description": "Baseline correction using adaptive iteratively reweighted penalized least",

@@ -5,0 +5,0 @@ "main": "lib/index.js",

@@ -11,3 +11,3 @@ import cholesky from './choleskySolver';

* @param {number} [options.maxIterations = 100] - Maximal number of iterations if the method does not reach the stop criterion
* @param {number} [options.factorCriterion = 0.001] - Factor of the sum of absolute value of original data, to compute stop criterion
* @param {number} [options.tolerance = 0.001] - Factor of the sum of absolute value of original data, to compute stop criterion
* @param {Array<number>} [options.weights = [1,1,...]] - Initial weights vector, default each point has the same weight

@@ -23,3 +23,3 @@ * @param {number} [options.lambda = 100] - Factor of weights matrix in -> [I + lambda D'D]z = x

lambda = 100,
factorCriterion = 0.001,
tolerance = 0.001,
weights = new Array(y.length).fill(1),

@@ -48,4 +48,3 @@ controlPoints = [],

let sumNegDifferences = Number.MAX_SAFE_INTEGER;
let stopCriterion =
factorCriterion * y.reduce((sum, e) => Math.abs(e) + sum, 0);
let stopCriterion = tolerance * y.reduce((sum, e) => Math.abs(e) + sum, 0);

@@ -52,0 +51,0 @@ let { lowerTriangularNonZeros, permutationEncodedArray } = getDeltaMatrix(

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc