Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

ml-levenberg-marquardt

Package Overview
Dependencies
Maintainers
7
Versions
17
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

ml-levenberg-marquardt - npm Package Compare versions

Comparing version 4.1.1 to 4.1.2

2

lib-esm/gradientFunction.d.ts

@@ -16,3 +16,3 @@ /**

}, evaluatedData: ArrayLike<number>, params: Array<number>, gradientDifference: number | any[], paramFunction: Function, centralDifference: boolean): Matrix;
import { Matrix } from "ml-matrix";
import { Matrix } from 'ml-matrix';
//# sourceMappingURL=gradientFunction.d.ts.map

@@ -5,3 +5,4 @@ /**

* @param {function} parameterizedFunction - Takes an array of parameters and returns a function with the independent variable as its sole argument
* @param {object} [options] - Options object
* @param {object} options - Options object
* @param {ArrayLike<number>} options.initialValues - Array of initial parameter values
* @param {number|ArrayLike<number>} [options.weights = 1] - weighting vector, if the length does not match with the number of data points, the vector is reconstructed with first value.

@@ -17,3 +18,2 @@ * @param {number} [options.damping = 1e-2] - Levenberg-Marquardt parameter, small values of the damping parameter λ result in a Gauss-Newton update and large

* @param {ArrayLike<number>} [options.maxValues] - Maximum allowed values for parameters
* @param {ArrayLike<number>} [options.initialValues] - Array of initial parameter values
* @param {number} [options.maxIterations = 100] - Maximum of allowed iterations

@@ -27,3 +27,4 @@ * @param {number} [options.errorTolerance = 10e-3] - Minimum uncertainty allowed for each point.

y: ArrayLike<number>;
}, parameterizedFunction: Function, options?: {
}, parameterizedFunction: Function, options: {
initialValues: ArrayLike<number>;
weights?: number | ArrayLike<number> | undefined;

@@ -38,7 +39,6 @@ damping?: number | undefined;

maxValues?: ArrayLike<number> | undefined;
initialValues?: ArrayLike<number> | undefined;
maxIterations?: number | undefined;
errorTolerance?: number | undefined;
timeout?: number | undefined;
} | undefined): {
}): {
parameterValues: Array<number>;

@@ -45,0 +45,0 @@ parameterError: number;

@@ -8,3 +8,4 @@ import checkOptions from './checkOptions';

* @param {function} parameterizedFunction - Takes an array of parameters and returns a function with the independent variable as its sole argument
* @param {object} [options] - Options object
* @param {object} options - Options object
* @param {ArrayLike<number>} options.initialValues - Array of initial parameter values
* @param {number|ArrayLike<number>} [options.weights = 1] - weighting vector, if the length does not match with the number of data points, the vector is reconstructed with first value.

@@ -20,3 +21,2 @@ * @param {number} [options.damping = 1e-2] - Levenberg-Marquardt parameter, small values of the damping parameter λ result in a Gauss-Newton update and large

* @param {ArrayLike<number>} [options.maxValues] - Maximum allowed values for parameters
* @param {ArrayLike<number>} [options.initialValues] - Array of initial parameter values
* @param {number} [options.maxIterations = 100] - Maximum of allowed iterations

@@ -27,3 +27,3 @@ * @param {number} [options.errorTolerance = 10e-3] - Minimum uncertainty allowed for each point.

*/
export function levenbergMarquardt(data, parameterizedFunction, options = {}) {
export function levenbergMarquardt(data, parameterizedFunction, options) {
let { checkTimeout, minValues, maxValues, parameters, weightSquare, damping, dampingStepUp, dampingStepDown, maxIterations, errorTolerance, centralDifference, gradientDifference, improvementThreshold, } = checkOptions(data, parameterizedFunction, options);

@@ -30,0 +30,0 @@ let error = errorCalculation(data, parameters, parameterizedFunction, weightSquare);

@@ -18,3 +18,3 @@ /**

};
import { Matrix } from "ml-matrix";
import { Matrix } from 'ml-matrix';
//# sourceMappingURL=step.d.ts.map

@@ -16,3 +16,3 @@ /**

}, evaluatedData: ArrayLike<number>, params: Array<number>, gradientDifference: number | any[], paramFunction: Function, centralDifference: boolean): Matrix;
import { Matrix } from "ml-matrix";
import { Matrix } from 'ml-matrix';
//# sourceMappingURL=gradientFunction.d.ts.map

@@ -5,3 +5,4 @@ /**

* @param {function} parameterizedFunction - Takes an array of parameters and returns a function with the independent variable as its sole argument
* @param {object} [options] - Options object
* @param {object} options - Options object
* @param {ArrayLike<number>} options.initialValues - Array of initial parameter values
* @param {number|ArrayLike<number>} [options.weights = 1] - weighting vector, if the length does not match with the number of data points, the vector is reconstructed with first value.

@@ -17,3 +18,2 @@ * @param {number} [options.damping = 1e-2] - Levenberg-Marquardt parameter, small values of the damping parameter λ result in a Gauss-Newton update and large

* @param {ArrayLike<number>} [options.maxValues] - Maximum allowed values for parameters
* @param {ArrayLike<number>} [options.initialValues] - Array of initial parameter values
* @param {number} [options.maxIterations = 100] - Maximum of allowed iterations

@@ -27,3 +27,4 @@ * @param {number} [options.errorTolerance = 10e-3] - Minimum uncertainty allowed for each point.

y: ArrayLike<number>;
}, parameterizedFunction: Function, options?: {
}, parameterizedFunction: Function, options: {
initialValues: ArrayLike<number>;
weights?: number | ArrayLike<number> | undefined;

@@ -38,7 +39,6 @@ damping?: number | undefined;

maxValues?: ArrayLike<number> | undefined;
initialValues?: ArrayLike<number> | undefined;
maxIterations?: number | undefined;
errorTolerance?: number | undefined;
timeout?: number | undefined;
} | undefined): {
}): {
parameterValues: Array<number>;

@@ -45,0 +45,0 @@ parameterError: number;

@@ -14,3 +14,4 @@ "use strict";

* @param {function} parameterizedFunction - Takes an array of parameters and returns a function with the independent variable as its sole argument
* @param {object} [options] - Options object
* @param {object} options - Options object
* @param {ArrayLike<number>} options.initialValues - Array of initial parameter values
* @param {number|ArrayLike<number>} [options.weights = 1] - weighting vector, if the length does not match with the number of data points, the vector is reconstructed with first value.

@@ -26,3 +27,2 @@ * @param {number} [options.damping = 1e-2] - Levenberg-Marquardt parameter, small values of the damping parameter λ result in a Gauss-Newton update and large

* @param {ArrayLike<number>} [options.maxValues] - Maximum allowed values for parameters
* @param {ArrayLike<number>} [options.initialValues] - Array of initial parameter values
* @param {number} [options.maxIterations = 100] - Maximum of allowed iterations

@@ -33,3 +33,3 @@ * @param {number} [options.errorTolerance = 10e-3] - Minimum uncertainty allowed for each point.

*/
function levenbergMarquardt(data, parameterizedFunction, options = {}) {
function levenbergMarquardt(data, parameterizedFunction, options) {
let { checkTimeout, minValues, maxValues, parameters, weightSquare, damping, dampingStepUp, dampingStepDown, maxIterations, errorTolerance, centralDifference, gradientDifference, improvementThreshold, } = (0, checkOptions_1.default)(data, parameterizedFunction, options);

@@ -36,0 +36,0 @@ let error = (0, errorCalculation_1.default)(data, parameters, parameterizedFunction, weightSquare);

@@ -18,3 +18,3 @@ /**

};
import { Matrix } from "ml-matrix";
import { Matrix } from 'ml-matrix';
//# sourceMappingURL=step.d.ts.map
{
"name": "ml-levenberg-marquardt",
"version": "4.1.1",
"version": "4.1.2",
"description": "Curve fitting method in javascript",

@@ -14,3 +14,2 @@ "main": "./lib/index.js",

"scripts": {
"build": "cheminfo-build",
"check-types": "tsc --noEmit",

@@ -49,18 +48,17 @@ "clean": "rimraf lib lib-esm",

"devDependencies": {
"@types/jest": "^27.4.1",
"@types/jest": "^29.5.0",
"benchmark": "^2.1.4",
"cheminfo-build": "^1.1.11",
"cz-conventional-changelog": "^3.3.0",
"eslint": "^8.10.0",
"eslint-config-cheminfo-typescript": "^10.3.0",
"jest": "^27.5.1",
"eslint": "^8.38.0",
"eslint-config-cheminfo-typescript": "^11.3.1",
"jest": "^29.5.0",
"jest-matcher-deep-close-to": "^3.0.2",
"prettier": "^2.5.1",
"rimraf": "^3.0.2",
"ts-jest": "^27.1.3",
"typescript": "^4.5.5"
"prettier": "^2.8.7",
"rimraf": "^5.0.0",
"ts-jest": "^29.1.0",
"typescript": "^5.0.4"
},
"dependencies": {
"is-any-array": "^2.0.0",
"ml-matrix": "^6.9.0"
"ml-matrix": "^6.10.4"
},

@@ -67,0 +65,0 @@ "config": {

@@ -1,2 +0,1 @@

/* eslint-disable jest/no-standalone-expect */
import { toBeDeepCloseTo, toMatchCloseTo } from 'jest-matcher-deep-close-to';

@@ -128,2 +127,8 @@

testInvocation(`Should fit ${problem.name}`, () => {
/** @type {any} */
const params = {
decimalsForParameterError: 2,
decimalsForParameterValues: 3,
...problem,
};
const {

@@ -138,9 +143,3 @@ getFunctionFromParameters,

decimalsForParameterValues,
} = Object.assign(
{
decimalsForParameterError: 2,
decimalsForParameterValues: 3,
},
problem,
);
} = params;
const xs = new Array(n)

@@ -242,8 +241,6 @@ .fill(0)

const { data, expected, getFunctionFromParameters, options, decimals } =
Object.assign(
{
decimals: 3,
},
problem,
);
{
decimals: 3,
...problem,
};
const actual = levenbergMarquardt(

@@ -250,0 +247,0 @@ data,

@@ -25,5 +25,5 @@ import { toBeDeepCloseTo } from 'jest-matcher-deep-close-to';

expect(() =>
// @ts-expect-error
levenbergMarquardt(inputData, sinFunction, {
damping: 0.1,
//initialValues: undefined,
}),

@@ -30,0 +30,0 @@ ).toThrow(expectedErrorMessage);

@@ -9,3 +9,4 @@ import checkOptions from './checkOptions';

* @param {function} parameterizedFunction - Takes an array of parameters and returns a function with the independent variable as its sole argument
* @param {object} [options] - Options object
* @param {object} options - Options object
* @param {ArrayLike<number>} options.initialValues - Array of initial parameter values
* @param {number|ArrayLike<number>} [options.weights = 1] - weighting vector, if the length does not match with the number of data points, the vector is reconstructed with first value.

@@ -21,3 +22,2 @@ * @param {number} [options.damping = 1e-2] - Levenberg-Marquardt parameter, small values of the damping parameter λ result in a Gauss-Newton update and large

* @param {ArrayLike<number>} [options.maxValues] - Maximum allowed values for parameters
* @param {ArrayLike<number>} [options.initialValues] - Array of initial parameter values
* @param {number} [options.maxIterations = 100] - Maximum of allowed iterations

@@ -28,3 +28,3 @@ * @param {number} [options.errorTolerance = 10e-3] - Minimum uncertainty allowed for each point.

*/
export function levenbergMarquardt(data, parameterizedFunction, options = {}) {
export function levenbergMarquardt(data, parameterizedFunction, options) {
let {

@@ -31,0 +31,0 @@ checkTimeout,

Sorry, the diff of this file is not supported yet

Sorry, the diff of this file is not supported yet

Sorry, the diff of this file is not supported yet

Sorry, the diff of this file is not supported yet

Sorry, the diff of this file is not supported yet

Sorry, the diff of this file is not supported yet

Sorry, the diff of this file is not supported yet

Sorry, the diff of this file is not supported yet

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc