Mongoose Fuzzy Searching
mongoose-fuzzy-searching is simple and lightweight plugin that enables fuzzy searching in documents in MongoDB.
This code is based on this article.
Features
Installation
Install using npm
npm i mongoose-fuzzy-searching
Usage
Simple usage
In the below example, we have a User
collection and we want to make fuzzy searching in firstName
and lastName
.
var mongoose_fuzzy_searching = require('mongoose-fuzzy-searching');
var UserSchema = new Schema({
firstName: String,
lastName: String,
email: String,
age: Number
});
UserSchema.plugin(mongoose_fuzzy_searching, {fields: ['firstName', 'lastName']});
var User = mongoose.model('User', UserSchema);
var user = new User({ firstName: 'Joe', lastName: 'Doe', email: 'joe.doe@mail.com', age: 30});
user.save(function () {
User.fuzzySearch('jo', function (err, users) {
console.error(err);
console.log(users);
});
});
The results are sorted by the confidenceScore
key. You can override this option.
User.fuzzySearch('jo').sort({ age: -1 }).exec(function (err, users) {
console.error(err);
console.log(users);
});
Plugin Options
Options must have a fields
key, which is an Array of Strings
or an Array of Objects
.
var mongoose_fuzzy_searching = require('mongoose-fuzzy-searching');
var UserSchema = new Schema({
firstName: String,
lastName: String,
email: String
});
UserSchema.plugin(mongoose_fuzzy_searching, {fields: ['firstName', 'lastName']});
UserSchema.plugin(mongoose_fuzzy_searching, {
fields: [{
name: 'firstName'
}, {
name: 'lastName'
}]
});
Object keys
The below table contains the expected keys for an object
key | type | default | description |
---|
name | String | null | Collection key name |
minSize | Integer | 2 | N-grams min size. Learn more about N-grams |
weight | Integer | 1 | Denotes the significance of the field relative to the other indexed fields in terms of the text search score. Learn more about index weights |
prefixOnly | Boolean | false | Only return ngrams from start of word. (It gives more precise results) |
escapeSpecialCharacters | Boolean | true | Remove special characters from N-grams. |
keys | Array[String] | null | If the type of the collection attribute is Object , you can define which attributes will be used for fuzzy searching |
Example:
var mongoose_fuzzy_searching = require('mongoose-fuzzy-searching');
var UserSchema = new Schema({
firstName: String,
lastName: String,
email: String,
text: [{
title: String,
description: String,
language: String
}]
});
UserSchema.plugin(mongoose_fuzzy_searching, {
fields: [{
name: 'firstName',
minSize: 2,
weight: 5
}, {
name: 'lastName',
minSize: 3,
prefixOnly: true,
}, {
name: 'email',
escapeSpecialCharacters: false,
}, {
name: 'text',
keys: ["title"]
}]
});
fuzzySearch parameters
fuzzySearch
method can accept up to three parameters. The first one is the query, which can either be either a String
or an Object
. This parameter is required.
The second parameter can either be eiter an Object
with other queries, for example age: { $gt: 18 }
, or a callback function.
If the second parameter is the options, then the third parameter is the callback function. If you don't set a callback function, the results will be returned inside a Promise.
The below table contains the expected keys for the first parameter (if is an object)
key | type | deafult | description |
---|
query | String | null | String to search |
minSize | Integer | 2 | N-grams min size. |
prefixOnly | Boolean | false | Only return ngrams from start of word. (It gives more precise results) the prefix |
Example:
Model.fuzzySearch('jo').then(console.log).catch(console.error);
Model.fuzzySearch({query: 'jo'}).then(console.log).catch(console.error);
Model.fuzzySearch({query: 'jo', prefixOnly: true, minSize: 4}).then(console.log).catch(console.error);
Model.fuzzySearch('jo', {age: { $gt: 18 }}).then(console.log).catch(console.error);
Model.fuzzySearch('jo', function(err, doc) {
if(err) {
console.error(err);
} else {
console.log(doc);
}
});
Model.fuzzySearch('jo', {age: { $gt: 18 }}, function(err, doc) {
if(err) {
console.error(err);
} else {
console.log(doc);
}
});
Work with pre-existing data
The plugin creates indexes for the selected fields. In the below example the new indexes will be firstName_fuzzy
and lastName_fuzzy
. Also, each document will have the fields firstName_fuzzy
[String] and lastName_fuzzy
[String]. These arrays will contain the anagrams for the selected fields.
var mongoose_fuzzy_searching = require('mongoose-fuzzy-searching');
var UserSchema = new Schema({
firstName: String,
lastName: String,
email: String,
age: Number
});
UserSchema.plugin(mongoose_fuzzy_searching, {fields: ['firstName', 'lastName']});
In other words, thit plugin creates anagrams when you create or update a document. All the pre-existing documents won't contain these fuzzy arrays, so fuzzySearch
function, will not be able to find them.
Update all pre-existing documents with ngrams
In order to create anagrams for pre-existing documents, you should update each document. The below example, updates the firstName
attribute to every document on the collection User
.
const { each, queue } = require('async');
const updateFuzzy = async (Model, attrs) => {
const docs = await Model.find();
const updateToDatabase = async (data, callback) => {
try {
if(attrs && attrs.length) {
const obj = attrs.reduce((acc, attr) => ({ ...acc, [attr]: data[attr] }), {});
return Model.findByIdAndUpdate(data._id, obj).exec();
}
return Model.findByIdAndUpdate(data._id, data).exec();
} catch (e) {
console.log(e);
} finally {
callback();
}
};
const myQueue = queue(updateToDatabase, 10);
each(docs, (data) => myQueue.push(data.toObject()));
myQueue.empty = function () {};
myQueue.drain = function () {};
}
updateFuzzy(User, ['firstName']);
Delete old ngrams from all documents
In the previous example, we set firstName
and lastName
as the fuzzy attributes. If you remove the firstName
from the fuzzy fields, the firstName_fuzzy
array will not be removed by the collection. If you want to remove the array on each document you have to unset that value.
const { each, queue } = require('async');
const removeUnsedFuzzyElements = (Model, attrs) => {
const docs = await Model.find();
const updateToDatabase = async (data, callback) => {
try {
const $unset = attrs.reduce((acc, attr) => ({...acc, [`${attr}_fuzzy`]: 1}), {})
return Model.findByIdAndUpdate(data._id, { $unset }, { new: true, strict: false }).exec();
} catch (e) {
console.log(e);
} finally {
callback();
}
};
const myQueue = queue(updateToDatabase, 10);
each(docs, (data) => myQueue.push(data.toObject()), () => { });
myQueue.empty = function () {
};
myQueue.drain = function () {
console.log("done");
};
}
removeUnsedFuzzyElements(User, ['firstName']);
License
MIT License
Copyright (c) 2019 Vassilis Pallas
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.