Security News
Input Validation Vulnerabilities Dominate MITRE's 2024 CWE Top 25 List
MITRE's 2024 CWE Top 25 highlights critical software vulnerabilities like XSS, SQL Injection, and CSRF, reflecting shifts due to a refined ranking methodology.
nlptoolkit-ngram
Advanced tools
An N-gram is a sequence of N words: a 2-gram (or bigram) is a two-word sequence of words like “lütfen ödevinizi”, “ödevinizi çabuk”, or ”çabuk veriniz”, and a 3-gram (or trigram) is a three-word sequence of words like “lütfen ödevinizi çabuk”, or “ödevinizi çabuk veriniz”.
To keep a language model from assigning zero probability to unseen events, we’ll have to shave off a bit of probability mass from some more frequent events and give it to the events we’ve never seen. This modification is called smoothing or discounting.
The simplest way to do smoothing is to add one to all the bigram counts, before we normalize them into probabilities. All the counts that used to be zero will now have a count of 1, the counts of 1 will be 2, and so on. This algorithm is called Laplace smoothing.
One alternative to add-one smoothing is to move a bit less of the probability mass from the seen to the unseen events. Instead of adding 1 to each count, we add a fractional count k. This algorithm is therefore called add-k smoothing.
You can also see Python, Java, C++, Swift, Cython or C# repository.
To check if you have a compatible version of Node.js installed, use the following command:
node -v
You can find the latest version of Node.js here.
Install the latest version of Git.
npm install nlptoolkit-ngram
In order to work on code, create a fork from GitHub page. Use Git for cloning the code to your local or below line for Ubuntu:
git clone <your-fork-git-link>
A directory called util will be created. Or you can use below link for exploring the code:
git clone https://github.com/starlangsoftware/ngram-js.git
Steps for opening the cloned project:
NGram-Js
fileTo create an empty NGram model:
NGram(N: number)
For example,
a = NGram(2)
this creates an empty NGram model.
To add an sentence to NGram
addNGramSentence(self, symbols: list)
For example,
nGram = NGram(2)
nGram.addNGramSentence(["jack", "read", "books", "john", "mary", "went"])
nGram.addNGramSentence(["jack", "read", "books", "mary", "went"])
with the lines above, an empty NGram model is created and two sentences are added to the bigram model.
NoSmoothing class is the simplest technique for smoothing. It doesn't require training. Only probabilities are calculated using counters. For example, to calculate the probabilities of a given NGram model using NoSmoothing:
a.calculateNGramProbabilitiesSimple(new NoSmoothing())
LaplaceSmoothing class is a simple smoothing technique for smoothing. It doesn't require training. Probabilities are calculated adding 1 to each counter. For example, to calculate the probabilities of a given NGram model using LaplaceSmoothing:
a.calculateNGramProbabilitiesSimple(new LaplaceSmoothing())
GoodTuringSmoothing class is a complex smoothing technique that doesn't require training. To calculate the probabilities of a given NGram model using GoodTuringSmoothing:
a.calculateNGramProbabilitiesSimple(new GoodTuringSmoothing())
AdditiveSmoothing class is a smoothing technique that requires training.
a.calculateNGramProbabilitiesTrained(trainedCorpus, new AdditiveSmoothing())
To find the probability of an NGram:
getProbability(... symbols: Array<Symbol>): number
For example, to find the bigram probability:
a.getProbability("jack", "reads")
To find the trigram probability:
a.getProbability("jack", "reads", "books")
FAQs
NGram library
We found that nlptoolkit-ngram demonstrated a not healthy version release cadence and project activity because the last version was released a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
MITRE's 2024 CWE Top 25 highlights critical software vulnerabilities like XSS, SQL Injection, and CSRF, reflecting shifts due to a refined ranking methodology.
Security News
In this segment of the Risky Business podcast, Feross Aboukhadijeh and Patrick Gray discuss the challenges of tracking malware discovered in open source softare.
Research
Security News
A threat actor's playbook for exploiting the npm ecosystem was exposed on the dark web, detailing how to build a blockchain-powered botnet.