Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

nmr-processing

Package Overview
Dependencies
Maintainers
4
Versions
268
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

nmr-processing - npm Package Compare versions

Comparing version 1.3.0 to 1.4.0

8

CHANGELOG.md
# Changelog
## [1.4.0](https://www.github.com/cheminfo/nmr-processing/compare/v1.3.0...v1.4.0) (2021-05-18)
### Features
* add multiplicity when join signals from prediction ([#61](https://www.github.com/cheminfo/nmr-processing/issues/61)) ([e938688](https://www.github.com/cheminfo/nmr-processing/commit/e938688fe6fceaea725b129b602602a7eab37695))
* add san plot as an option to determine the noise level of 1D spectrum. ([#59](https://www.github.com/cheminfo/nmr-processing/issues/59)) ([0f20e1f](https://www.github.com/cheminfo/nmr-processing/commit/0f20e1f50824747c76f96c832bbb6c89888c7750))
## [1.3.0](https://www.github.com/cheminfo/nmr-processing/compare/v1.2.0...v1.3.0) (2021-05-11)

@@ -4,0 +12,0 @@

4

package.json
{
"name": "nmr-processing",
"version": "1.3.0",
"version": "1.4.0",
"description": "",

@@ -16,2 +16,4 @@ "main": "lib/index.js",

"prepublishOnly": "rollup -c",
"prettier": "prettier --check src",
"prettier-write": "prettier --write src",
"test": "npm run test-coverage && npm run eslint",

@@ -18,0 +20,0 @@ "test-coverage": "jest --coverage",

@@ -71,7 +71,13 @@ import mean from 'ml-array-mean';

newSignals = newSignals
.map((signal) =>
signalNormalize(signalJoinCouplings(signal, { tolerance })),
)
.map((signal) => {
signal = signalNormalize(signalJoinCouplings(signal, { tolerance }));
if (signal.j) {
signal.multiplicity = signal.j.reduce((multiplicity, jCoupling) => {
return `${multiplicity}${jCoupling.multiplicity}`;
}, '');
}
return signal;
})
.sort((a, b) => a.delta - b.delta);
return newSignals;
}
import { gsd, joinBroadPeaks, optimizePeaks } from 'ml-gsd';
import { xAbsoluteMedian, xyExtract } from 'ml-spectra-processing';
import {
xyExtract,
xNoiseSanPlot,
xAbsoluteMedian,
} from 'ml-spectra-processing';
/**

@@ -30,4 +34,7 @@ * Implementation of the peak picking method described by Cobas in:

to,
minMaxRatio = 0.01,
noiseLevel,
thresholdFactor = 3,
minMaxRatio = 0.05,
broadRatio = 0.00025,
useSanPlot = false,
smoothY = true,

@@ -41,3 +48,2 @@ optimize = false,

lookNegative = false,
noiseLevel = xAbsoluteMedian(data.y) * (options.thresholdFactor || 3),
sgOptions = { windowSize: 9, polynomial: 3 },

@@ -50,2 +56,4 @@ } = options;

const cutOff = getCutOff(data.y, { noiseLevel, useSanPlot, thresholdFactor });
let getPeakOptions = {

@@ -59,3 +67,3 @@ shape,

broadRatio,
noiseLevel,
noiseLevel: cutOff.positive,
smoothY,

@@ -66,6 +74,10 @@ optimization,

let result = getPeakList(data, getPeakOptions);
return lookNegative
? result.concat(getNegativePeaks(data, getPeakOptions))
: result;
let peaks = getPeakList(data, getPeakOptions);
if (lookNegative) {
getPeakOptions.noiseLevel = cutOff.negative;
peaks.push(...getNegativePeaks(data, getPeakOptions));
}
return peaks;
}

@@ -130,1 +142,18 @@

}
function getCutOff(data, options = {}) {
const { noiseLevel, useSanPlot, thresholdFactor } = options;
const formatResult = (noiseLevel) =>
typeof noiseLevel === 'number'
? { positive: noiseLevel, negative: -noiseLevel }
: noiseLevel;
if (noiseLevel) {
return formatResult(noiseLevel);
} else {
return useSanPlot
? xNoiseSanPlot(data, { factorStd: thresholdFactor })
: formatResult(xAbsoluteMedian(data) * thresholdFactor);
}
}

Sorry, the diff of this file is too big to display

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc