Security News
PyPI Introduces Digital Attestations to Strengthen Python Package Security
PyPI now supports digital attestations, enhancing security and trust by allowing package maintainers to verify the authenticity of Python packages.
node-api-dotnet
Advanced tools
This project enables advanced interoperability between .NET and JavaScript in the same process.
Interop is high-performance and supports TypeScript type-definitions generation, async (tasks/promises), streams, and more. It uses Node API so it is compatible with any Node.js version (without recompiling) or other JavaScript runtime that supports Node API.
:warning: Status: In Development - Core functionality works, but many things are incomplete, and it isn't yet all packaged up nicely in a way that can be easily consumed.
Instructions for getting started are below.
// JavaScript
const Console = require('node-api-dotnet').Console;
Console.WriteLine('Hello from .NET!');
// C#
interface IConsole { void Log(string message); }
var nodejs = new NodejsPlatform(libnodePath).CreateEnvironment();
nodejs.Run(() => {
var console = nodejs.Import<IConsole>("global", "console");
console.Log("Hello from JS!");
});
For more examples, see the examples directory.
The node-api-dotnet
package manages hosting the .NET runtime in the JS process
(if not using AOT - see below). The .NET core library types are available directly on the
node-api-dotnet
module, and additional .NET assemblies can be loaded by file path:
// JavaScript
const dotnet = require('node-api-dotnet');
const ExampleAssembly = dotnet.load('path/to/ExampleAssembly.dll');
const exampleObj = new ExampleAssembly.ExampleClass(...args);
.NET namespaces are stripped for convenience, but in case of ambiguity it's possible to get a type by full name:
// JavaScript
const MyType = ExampleAssembly['Namespace.Qualified.MyType'];
Calling JavaScript from .NET requires hosting a JS runtime such as Node.js in the .NET app. Then JS packages can be imported either directly as JS values or by declaring C# interfaces for the JS types and using automatic marshalling.
All interaction with a JavaScript environment must be from its thread, via the
Run()
, RunAsync()
, or Post()
methods on the JS environment object.
// C#
interface IExample
{
void ExampleMethod();
}
var nodejsPlatform = new NodejsPlatform(libnodePath);
var nodejs = nodejsPlatform.CreateEnvironment();
nodejs.Run(() => {
// Import a module property, then call a function on it.
var example1 = nodejs.Import("example-npm-package", "ExampleObject");
example1.CallMethod("exampleMethod");
// Import the module property using an interface, and call the same function.
var example2 = nodejs.Import<IExample>("example-npm-package", "ExampleObject");
example2.ExampleMethod();
});
In the future, it may be possible to automatically generate .NET API definitions from TypeScript type definitions.
If writing TypeScript, or type-checked JavaScript, there is a tool to generate type .d.ts
type
definitions for .NET APIs. Soon, it should also generate a small .js
file that exports the
assembly in a more natural way as a JS module.
$ npm exec node-api-dotnet-generator --assembly ExampleAssembly.dll --typedefs ExampleAssembly.d.ts
// TypeScript
import { ExampleClass } from './ExampleAssembly';
ExampleClass.ExampleMethod(...args); // This call is type-checked!
For reference, there is a list of C# type projections to TypeScript.
JavaScript code can await
a call to a .NET method that returns a Task
. The marshaller
automatically sets up a SynchronizationContext
so that the .NET result is returned back to the
JS thread.
// TypeScript
import { ExampleClass } from './ExampleAssembly';
const asyncResult = await ExampleClass.GetSomethingAsync(...args);
.NET Task
s are seamlessly marshaled to & from JS Promise
s. So JS code can work naturally with
a Promise
returned from a .NET async method, and a JS Promise
passed to .NET becomes a
JSPromise
that can be await
ed in the C# code.
Exceptions/errors thrown in .NET or JS are propagated across the boundary with stack traces.
Under development. More to be written...
A C# class library project can use the [JSExport]
attribute to tag (and rename) APIs that are
exported when the library is built as a JavaScript module. A C# Source Generator runs as
part of the compilation and generates code to export the tagged APIs and marshal values between
JavaScript and C#.
// C#
[JSExport] // Export class and all public members to JS.
public class ExampleClass { ... }
public static class ExampleStaticClass
{
[JSExport("exampleFunction")] // Export as a module-level function.
public static string StaticMethod(ExampleClass obj) { ... }
// (Other public members in this class are not exported by default.)
}
The [JSExport]
source generator enables faster startup time because the marshaling code is
generated at build time rather than dynamically emitted at runtime (as when calling a pre-built
assembly). The source generator also enables building ahead-of-time compiled libraries in C# that
can be called by JavaScript without depending on the .NET Runtime. (More on that below.)
The class library includes an object model for the JavaScript type system. JSValue
represents a
value of any type, and there are more types like JSObject
, JSArray
, JSMap
, JSPromise
, etc.
C# code can work directly with those types if desired:
// C#
[JSExport]
public static JSPromise JSAsyncExample(JSValue input)
{
// Example of integration between C# async/await and JS promises.
string greeter = (string)input;
return new JSPromise(async (resolve) =>
{
await Task.Delay(50);
resolve((JSValue)$"Hey {greeter}!");
});
}
There are two ways to get automatic marshaling between C# and JavaScript types:
Compile a C# class library with [JSExport]
attributes like the examples above. The source
generator produces marshaling code that is compiled with the assembly.
Load a pre-built .NET assembly, as in the earlier examples. The loader will use reflection to
scan the APIs, then emit marshaling code on-demand for each type that is referenced by JS. The
dynamic marshalling code is derived from the same expression trees that are used for compile-time
source-generation, but is generated and at runtime and compiled with
LambdaExpression.Compile()
.
So there is a small startup cost from that reflection and compilation, but subsequent calls to
the same APIs may be just as fast as the pre-compiled marshaling code (and are just as likely
to be JITted).
The marshaller uses the strong typing information from the C# API declarations as hints about how to convert values beteen JavaScript and C#. Here's a general summary of conversions:
IList<T>
and JS collections like Map<T>
are also passed by reference;
access to collection elements is proxied to whichever side the real instance of the collection
is on.TypedArray
s are mapped to C# Memory<T>
and passed by reference using shared memory
(no proxying is needed)..NET Stream
s are automatically marshalled to and from Node.js Duplex
(or Readable
or
Writable
) streams. That means JS code can seamlessly read from or write to streams created
by .NET. Or .NET code can read from or write to streams created by JS. Streamed data is
transferred using shared memory (without any additional sockets or pipes), so memory allocation
and copying is minimized.
This library supports hosting the .NET Runtime in the same process as the JavaScript runtime. Alternatively, it also supports building native ahead-of-time (AOT) compiled C# libraries that are loadable as a JavaScript module without depending on the .NET Runtime.
There are advantages and disadvantages to either approach:
.NET Runtime | .NET Native AOT | |
---|---|---|
API compatibility | Broad compatibility with .NET APIs | Limited compatibility with APIs designed to support AOT |
Ease of deployment | Requires a matching version of .NET to be installed on the target system | A .NET installation is not required (though some platform libs may be required on Linux/Mac) |
Size of deployment | Compact - only IL assemblies need to be deployed | Larger due to bundling necessary runtime code - minimum ~3 MB per platform |
Performance | Slightly slower startup (JIT) | Slightly faster startup (no JIT) |
Runtime limitations | Full .NET functionality | Some .NET features like reflection and code-generation aren't supported |
The project is designed to be as performant as possible when bridging between .NET and JavaScript. Techniques benefitting performance include:
Span<T>
and stackalloc
to minimize
heap allocations and copying.Thanks to these design choices, JS to .NET calls are more than twice as fast when compared to edge-js
using
that project's benchmark.
For calling .NET from JS, choose between one of the following scenarios:
node-api-dotnet
npm package and
the path to a .NET assembly you want to call. But it has some limitations (not all kinds of APIs
are supported), and is not quite as fast as a C# module, because marshalling code must be
generated at runtime.For calling JS from .NET, more documentation will be added soon. For now, see the
winui-fluid
example code.
Generated TypeScript type definitions can be utilized with any of these aproaches.
For information about building, testing, and contributing changes to this project, see README-DEV.md.
This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.
When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.
This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.
This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.
FAQs
Node-API bindings for .Net
We found that node-api-dotnet demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 0 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
PyPI now supports digital attestations, enhancing security and trust by allowing package maintainers to verify the authenticity of Python packages.
Security News
GitHub removed 27 malicious pull requests attempting to inject harmful code across multiple open source repositories, in another round of low-effort attacks.
Security News
RubyGems.org has added a new "maintainer" role that allows for publishing new versions of gems. This new permission type is aimed at improving security for gem owners and the service overall.