Socket
Socket
Sign inDemoInstall

node-ffi-rs

Package Overview
Dependencies
Maintainers
1
Versions
45
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

node-ffi-rs

A module written in Rust and N-API provides interface (FFI) features for Node.js


Version published
Weekly downloads
96
decreased by-25%
Maintainers
1
Weekly downloads
 
Created
Source

ffi-rs

English | 简体中文

A module written in Rust and N-API provides interface (FFI) features for Node.js

Description

ffi-rs is a high-performance module written in Rust and N-API that provides FFI (Foreign Function Interface) features for Node.js. It allows developers to call functions written in other languages such as C++, C, and Rust directly from JavaScript without writing any C++ code.

This module aims to provide similar functionality to the node-ffi module but with a completely rewritten underlying codebase. The node-ffi module has been unmaintained for several years and is no longer usable, so ffi-rs was developed to fill that void.

features

  • High performance ✨
  • Simpler data description and API interface 💗
  • Support more data types between Node.js and c type 😊
  • Support modify data in place 🥸
  • Provide many functions to handle pointer type

benchmark

$ node bench/bench.js
Running "ffi" suite...
Progress: 100%

  ffi-napi:
    2 028 ops/s, ±4.87%     | slowest, 99.24% slower

  ffi-rs:
    318 467 ops/s, ±0.17%   | fastest

Finished 2 cases!
  Fastest: ffi-rs
  Slowest: ffi-napi

install

$ npm i ffi-rs

Support type

Currently, ffi-rs only supports these types of parameters and return values. However, support for more types may be added in the future based on actual usage scenarios.

Basic Type

Reference Type

C++ Class

If you want to call C++ function, see tutorial

Support Platform

Note: You need to make sure that the compilation environment of the dynamic library is the same as the installation and runtime environment of the ffi-rs call.

  • darwin-x64
  • darwin-arm64
  • linux-x64-gnu
  • linux-x64-musl
  • win32-x64-msvc
  • win32-ia32-msvc
  • linux-arm64-gnu
  • linux-arm64-musl

Usage

View test.ts get the latest usage

Here is an example of how to use ffi-rs:

For the following C++ code, we compile this file into a dynamic library

write C/C++ code

Note: The return value type of a function must be of type c

#include <cstdio>
#include <cstring>
#include <iostream>
#include <string>

extern "C" int sum(int a, int b) { return a + b; }

extern "C" double doubleSum(double a, double b) { return a + b; }

extern "C" const char *concatenateStrings(const char *str1, const char *str2) {
  std::string result = std::string(str1) + std::string(str2);
  char *cstr = new char[result.length() + 1];
  strcpy(cstr, result.c_str());
  return cstr;
}

extern "C" void noRet() { printf("%s", "hello world"); }
extern "C" bool return_opposite(bool input) { return !input; }


compile C code into a dynamic library

$ g++ -dynamiclib -o libsum.so cpp/sum.cpp # macos
$ g++ -shared -o libsum.so cpp/sum.cpp # linux
$ g++ -shared -o sum.dll cpp/sum.cpp # win

call dynamic library by ffi-rs

Then you can use ffi-rs to invoke the dynamic library file that contains functions.

Initialization

const { equal } = require('assert')
const { load, DataType, open, close, arrayConstructor } = require('ffi-rs')
const a = 1
const b = 100
const dynamicLib = platform === 'win32' ? './sum.dll' : "./libsum.so"
// first open dynamic library with key for close
// It only needs to be opened once.
open({
  library: 'libsum', // key
  path: dynamicLib // path
})
const r = load({
  library: "libsum", // path to the dynamic library file
  funcName: 'sum', // the name of the function to call
  retType: DataType.I32, // the return value type
  paramsType: [DataType.I32, DataType.I32], // the parameter types
  paramsValue: [a, b] // the actual parameter values
})
equal(r, a + b)
// release library memory when you're not using it.
close('libsum')

Load Main Program handle

You can alse pass emptry path string in open function like ffi-napi to get the main program handle refer dlopen

open({
  library: "libnative",
  path: "",
});
// In darwin/linux, you can call atoi function which is included in the basic c library
equal(
  load({
    library: "libnative",
    funcName: "atoi",
    retType: DataType.I32,
    paramsType: [DataType.String],
    paramsValue: ["1000"],
  }),
  1000,
);

Basic Types

number|string|boolean|double|void are basic types

const c = "foo"
const d = c.repeat(200)

equal(c + d, load({
  library: 'libsum',
  funcName: 'concatenateStrings',
  retType: DataType.String,
  paramsType: [DataType.String, DataType.String],
  paramsValue: [c, d]
}))

equal(undefined, load({
  library: 'libsum',
  funcName: 'noRet',
  retType: DataType.Void,
  paramsType: [],
  paramsValue: []
}))


equal(1.1 + 2.2, load({
  library: 'libsum',
  funcName: 'doubleSum',
  retType: DataType.Double,
  paramsType: [DataType.Double, DataType.Double],
  paramsValue: [1.1, 2.2]
}))
const bool_val = true
equal(!bool_val, load({
  library: 'libsum',
  funcName: 'return_opposite',
  retType: DataType.Boolean,
  paramsType: [DataType.Boolean],
  paramsValue: [bool_val],
}))

Buffer

In the latest version, ffi-rs supports modifying data in place.

The sample code is as follows

extern int modifyData(char* buffer) {
    // modify buffer data in place
}
const arr = Buffer.alloc(200) // create buffer
const res = load({
  library: "libsum",
  funcName: "modifyData",
  retType: DataType.I32,
  paramsType: [
    DataType.U8Array
  ],
  paramsValue: [arr]
})
console.log(arr) // buffer data can be updated

Array

When using array as retType, you should use arrayConstructor to specify the array type with a legal length which is important.

If the length is incorrect, the program may exit abnormally

extern "C" int *createArrayi32(const int *arr, int size) {
  int *vec = (int *)malloc((size) * sizeof(int));

  for (int i = 0; i < size; i++) {
    vec[i] = arr[i];
  }
  return vec;
}
extern "C" double *createArrayDouble(const double *arr, int size) {
  double *vec = (double *)malloc((size) * sizeof(double));
  for (int i = 0; i < size; i++) {
    vec[i] = arr[i];
  }
  return vec;
}

extern "C" char **createArrayString(char **arr, int size) {
  char **vec = (char **)malloc((size) * sizeof(char *));
  for (int i = 0; i < size; i++) {
    vec[i] = arr[i];
  }
  return vec;
}

let bigArr = new Array(100).fill(100)
deepStrictEqual(bigArr, load({
  library: 'libsum',
  funcName: 'createArrayi32',
  retType: arrayConstructor({ type: DataType.I32Array, length: bigArr.length }),
  paramsType: [DataType.I32Array, DataType.I32],
  paramsValue: [bigArr, bigArr.length],
}))

let bigDoubleArr = new Array(5).fill(1.1)
deepStrictEqual(bigDoubleArr, load({
  library: 'libsum',
  funcName: 'createArrayDouble',
  retType: arrayConstructor({ type: DataType.DoubleArray, length: bigDoubleArr.length }),
  paramsType: [DataType.DoubleArray, DataType.I32],
  paramsValue: [bigDoubleArr, bigDoubleArr.length],
}))
let stringArr = [c, c.repeat(20)]

deepStrictEqual(stringArr, load({
  library: 'libsum',
  funcName: 'createArrayString',
  retType: arrayConstructor({ type: DataType.StringArray, length: stringArr.length }),
  paramsType: [DataType.StringArray, DataType.I32],
  paramsValue: [stringArr, stringArr.length],
}))

Pointer

In ffi-rs, we use DataType.External for wrapping the pointer which enables it to be passed between Node.js and C.

Pointer is complicated and underlying, ffi-rs provide four functions to handle this pointer include createPointer, restorePointer, wrapPointer, unwrapPointer for different scene.

extern "C" const char *concatenateStrings(const char *str1, const char *str2) {
  std::string result = std::string(str1) + std::string(str2);
  char *cstr = new char[result.length() + 1];
  strcpy(cstr, result.c_str());
  return cstr;
}

extern "C" char *getStringFromPtr(void *ptr) { return (char *)ptr; };
// get pointer
const ptr = load({
  library: "libsum",
  funcName: "concatenateStrings",
  retType: DataType.External,
  paramsType: [DataType.String, DataType.String],
  paramsValue: [c, d],
})

// send pointer
const string = load({
  library: "libsum",
  funcName: "getStringFromPtr",
  retType: DataType.String,
  paramsType: [DataType.External],
  paramsValue: [ptr],
})
createPointer

createPointer function is used for create a pointer point to specify type. In order to avoid mistaks, developers have to understand what type this pointer is.

For numeric type like i32|u8|i64|f64, createPointer will create a pointer like *mut i32 point to there number

For types that are originally pointer types like char * represent string type in c, createPointer will create a dual pointer like *mut *mut c_char point to *mut c_char.Developers can use unwrapPointer get the interal pointer *mut c_char

let bigDoubleArr = new Array(5).fill(1.1);
deepStrictEqual(
  bigDoubleArr,
  load({
    library: "libsum",
    funcName: "createArrayDouble",
    retType: arrayConstructor({
      type: DataType.DoubleArray,
      length: bigDoubleArr.length,
    }),
    paramsType: [DataType.DoubleArray, DataType.I32],
    paramsValue: [bigDoubleArr, bigDoubleArr.length],
  }),
);

For the code above, we can use createPointer function to wrap a pointer data and send it as paramsValue

const funcExternal: unknown[] = createPointer({
  paramsType: [DataType.DoubleArray],
  paramsValue: [[1.1,2.2]]
})
const ptr = funcExternal[0]
load({
  library: "libsum",
  funcName: "createArrayDouble",
  retType: arrayConstructor({
    type: DataType.DoubleArray,
    length: bigDoubleArr.length,
  }),
  paramsType: [DataType.External, DataType.I32],
  paramsValue: [ptr, bigDoubleArr.length],
})

The two pieces of code above are equivalent

restorePointer

Similarly, you can use restorePointer to restore data from pointer which is wrapped by createPointer

const pointerArr = createPointer({
  paramsType: [DataType.DoubleArray],
  paramsValue: [[1.1, 2.2]]
})
const restoreData = restorePointer({
  retType: [arrayConstructor({
    type: DataType.DoubleArray,
    length: 2
  })],
  paramsValue: pointerArr
})
deepStrictEqual(restoreData, [[1.1, 2.2]])
wrapPointer

wrapPointer is used to create multiple pointer.

For example, developers can use wrapPointer to create a pointer point to other existing pointer.

const { wrapPointer } = require('ffi-rs')
// ptr type is *mut c_char
const ptr = load({
  library: "libsum",
  funcName: "concatenateStrings",
  retType: DataType.External,
  paramsType: [DataType.String, DataType.String],
  paramsValue: [c, d],
})

// wrapPtr type is *mut *mut c_char
const wrapPtr = wrapPointer([ptr])[0]
unwrapPointer

unwrapPointer is oppsite to wrapPointer which is used to get the internal pointer for multiple pointer

const { unwrapPointer, createPointer } = require('ffi-rs')
// ptr type is *mut *mut c_char
let ptr = createPointer({
  paramsType: [DataType.String],
  paramsValue: ["foo]
})

// unwrapPtr type is *mut c_char
const unwrapPtr = unwrapPointer([ptr])[0]

Struct

To create a c struct or get a c struct as a return type, you need to define the types of the parameters strictly in the order in which the fields of the c structure are defined.

typedef struct Person {
  int age;
  double *doubleArray;
  Person *parent;
  double doubleProps;
  const char *name;
  char **stringArray;
  int *i32Array;
  bool boolTrue;
  bool boolFalse;
  int64_t longVal;
  char byte;
  char *byteArray;
} Person;
extern "C" Person *getStruct(Person *person) {
  return person;
}

extern "C" Person *createPerson() {
  Person *person = (Person *)malloc(sizeof(Person));

  // Allocate and initialize doubleArray
  double initDoubleArray[] = {1.1, 2.2, 3.3};
  person->doubleArray = (double *)malloc(sizeof(initDoubleArray));
  memcpy(person->doubleArray, initDoubleArray, sizeof(initDoubleArray));

  // Initialize age and doubleProps
  person->age = 23;
  person->doubleProps = 1.1;
  person->byte = 'A';

  // Allocate and initialize name
  person->name = strdup("tom");

  char *stringArray[] = {strdup("tom")};
  person->stringArray = (char **)malloc(sizeof(stringArray));
  memcpy(person->stringArray, stringArray, sizeof(stringArray));

  // Allocate and initialize byteArray
  char initByteArray[] = {101, 102};
  person->byteArray = (char *)malloc(sizeof(initByteArray));
  memcpy(person->byteArray, initByteArray, sizeof(initByteArray));

  int initI32Array[] = {1, 2, 3, 4};
  person->i32Array = (int *)malloc(sizeof(initI32Array));
  memcpy(person->i32Array, initI32Array, sizeof(initI32Array));

  person->boolTrue = true;
  person->boolFalse = false;
  person->longVal = 4294967296;

  // Allocate and initialize parent
  person->parent = (Person *)malloc(sizeof(Person));
  double parentDoubleArray[] = {1.1, 2.2, 3.3};
  person->parent->doubleArray = (double *)malloc(sizeof(parentDoubleArray));
  memcpy(person->parent->doubleArray, parentDoubleArray,
         sizeof(parentDoubleArray));

  person->parent->age = 43;
  person->parent->doubleProps = 3.3;
  person->parent->name = strdup("tom father");

  char *pstringArray[] = {strdup("tom"), strdup("father")};
  person->parent->stringArray = (char **)malloc(sizeof(pstringArray));

  memcpy(person->parent->stringArray, pstringArray, sizeof(pstringArray));

  int parentI32Array[] = {5, 6, 7};
  person->parent->i32Array = (int *)malloc(sizeof(parentI32Array));
  memcpy(person->parent->i32Array, parentI32Array, sizeof(parentI32Array));

  person->parent->boolTrue = true;
  person->parent->boolFalse = false;
  person->parent->longVal = 5294967296;
  person->parent->byte = 'B';

  char parentByteArray[] = {103, 104};
  person->parent->byteArray = (char *)malloc(sizeof(parentByteArray));
  memcpy(person->parent->byteArray, parentByteArray, sizeof(parentByteArray));

  return person;
}
const parent = {
  age: 43,
  doubleArray: [1.1, 2.2, 3.3],
  parent: {},
  doubleProps: 3.3,
  name: "tom father",
  stringArray: ["tom", "father"],
  i32Array: [5, 6, 7],
  boolTrue: true,
  boolFalse: false,
  longVal: 5294967296,
  byte: 66,
  byteArray: Buffer.from([103, 104]),
};
const person = {
  age: 23,
  doubleArray: [1.1, 2.2, 3.3],
  parent,
  doubleProps: 1.1,
  name: "tom",
  stringArray: ["tom"],
  i32Array: [1, 2, 3, 4],
  boolTrue: true,
  boolFalse: false,
  longVal: 4294967296,
  byte: 65,
  byteArray: Buffer.from([101, 102]),
};
const parentType = {
  age: DataType.I32,
  doubleArray: arrayConstructor({
    type: DataType.DoubleArray,
    length: parent.doubleArray.length,
  }),
  parent: {},
  doubleProps: DataType.Double,
  name: DataType.String,
  stringArray: arrayConstructor({
    type: DataType.StringArray,
    length: parent.stringArray.length,
  }),
  i32Array: arrayConstructor({
    type: DataType.I32Array,
    length: parent.i32Array.length,
  }),
  boolTrue: DataType.Boolean,
  boolFalse: DataType.Boolean,
  longVal: DataType.I64,
  byte: DataType.U8,
  byteArray: arrayConstructor({
    type: DataType.U8Array,
    length: parent.byteArray.length,
  }),
};
const personType = {
  age: DataType.I32,
  doubleArray: arrayConstructor({
    type: DataType.DoubleArray,
    length: person.doubleArray.length,
  }),
  parent: parentType,
  doubleProps: DataType.Double,
  name: DataType.String,
  stringArray: arrayConstructor({
    type: DataType.StringArray,
    length: person.stringArray.length,
  }),
  i32Array: arrayConstructor({
    type: DataType.I32Array,
    length: person.i32Array.length,
  }),
  boolTrue: DataType.Boolean,
  boolFalse: DataType.Boolean,
  longVal: DataType.I64,
  byte: DataType.U8,
  byteArray: arrayConstructor({
    type: DataType.U8Array,
    length: person.byteArray.length,
  }),
};
const personObj = load({
  library: "libsum",
  funcName: "getStruct",
  retType: personType,
  paramsType: [
    {
      age: DataType.I32,
      doubleArray: DataType.DoubleArray,
      parent: {
        parent: {},
        age: DataType.I32,
        doubleProps: DataType.Double,
        name: DataType.String,
        stringArray: DataType.StringArray,
        doubleArray: DataType.DoubleArray,
        i32Array: DataType.I32Array,
        boolTrue: DataType.Boolean,
        boolFalse: DataType.Boolean,
        longVal: DataType.I64,
        byte: DataType.U8,
        byteArray: DataType.U8Array,
      },
      doubleProps: DataType.Double,
      name: DataType.String,
      stringArray: DataType.StringArray,
      i32Array: DataType.I32Array,
      boolTrue: DataType.Boolean,
      boolFalse: DataType.Boolean,
      longVal: DataType.I64,
      byte: DataType.U8,
      byteArray: DataType.U8Array,
    },
  ],
  paramsValue: [person],
});
deepStrictEqual(person, personObj);
const createdPerson = load({
  library: "libsum",
  funcName: "createPerson",
  retType: personType,
  paramsType: [],
  paramsValue: [],
});

deepStrictEqual(createdPerson, person);

Function

ffi-rs supports passing js function to c, like this

typedef void (*FunctionPointer)(int a, bool b, char *c, char **d, int *e,
                                Person *p);

extern "C" void callFunction(FunctionPointer func) {
  printf("callFunction\n");

  for (int i = 0; i < 2; i++) {
    int a = 100;
    bool b = false;
    double ddd = 100.11;
    char *c = (char *)malloc(14 * sizeof(char));
    strcpy(c, "Hello, World!");

    char **stringArray = (char **)malloc(sizeof(char *) * 2);
    stringArray[0] = strdup("Hello");
    stringArray[1] = strdup("world");

    int *i32Array = (int *)malloc(sizeof(int) * 3);
    i32Array[0] = 101;
    i32Array[1] = 202;
    i32Array[2] = 303;

    Person *p = createPerson();
    func(a, b, c, stringArray, i32Array, p);
  }
}

Corresponds to the code above,you can use ffi-rs like

let count = 0;
const func = (a, b, c, d, e, f) => {
  equal(a, 100);
  equal(b, false);
  equal(c, "Hello, World!");
  deepStrictEqual(d, ["Hello", "world"]);
  deepStrictEqual(e, [101, 202, 303]);
  deepStrictEqual(f, person);
  console.log("callback called");
  count++;
  if (count === 2) {
    console.log("test succeed");
    process.exit(0);
  }
};

load({
  library: "libsum",
  funcName: "callFunction",
  retType: DataType.Void,
  paramsType: [
    funcConstructor({
      paramsType: [
        DataType.I32,
        DataType.Boolean,
        DataType.String,
        arrayConstructor({ type: DataType.StringArray, length: 2 }),
        arrayConstructor({ type: DataType.I32Array, length: 3 }),
        personType,
      ],
      retType: DataType.Void,
    }),
  ],
  paramsValue: [func],
});

The function parameters supports type are all in the example above (double type is unsupported at this time), we will support more types in the future

Attention,since the vast majority of scenarios developers pass js function to c as a callback, so ffi-rs will create threadsafe_function from jsfunction which means the jsfunction will be called asynchronous, and Node.js process will not be exited automatically

C++

We'll provide more examples from real-world scenarios, if you have any ideas, please submit an issue

class type

In C++ scene, we can use DataType.External to get a class type pointer

In the code below, we use C types to wrap C++ types such as convert char * to std::string and return class pointer

MyClass *createMyClass(std::string name, int age) {
  return new MyClass(name, age);
}

extern "C" MyClass *createMyClassFromC(const char *name, int age) {
  return createMyClass(std::string(name), age);
}

extern "C" void printMyClass(MyClass *instance) { instance->print(); }

And then, it can called by the following code

const classPointer = load({
  library: "libsum",
  funcName: "createMyClassFromC",
  retType: DataType.External,
  paramsType: [
    DataType.String,
    DataType.I32
  ],
  paramsValue: ["classString", 26],
});
load({
  library: "libsum",
  funcName: "printMyClass",
  retType: DataType.External,
  paramsType: [
    DataType.External,
  ],
  paramsValue: [classPointer],
})

Keywords

FAQs

Package last updated on 09 Apr 2024

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc