ffi-rs
A module written in Rust and N-API provides interface (FFI) features for Node.js
Description
ffi-rs is a high-performance module written in Rust and N-API that provides FFI (Foreign Function Interface) features for Node.js. It allows developers to call functions written in other languages such as C++, C, and Rust directly from JavaScript without writing any C++ code.
This module aims to provide similar functionality to the node-ffi module but with a completely rewritten underlying codebase. The node-ffi module has been unmaintained for several years and is no longer usable, so ffi-rs was developed to fill that void.
Features
- High performance ✨
- Better type hints 🧐
- Simpler data description and API interface 💗
- Support more different data types between
Node.js
and C
😊 - Support modifying data in place 🥸
- Provide many ways to handle pointer type directly 🐮
- Support running ffi task in a new thread 🤩️
- Support output errno info 🤔️
- No need to use ref to handle pointer 🤫
Benchmark
$ node bench/bench.js
Running "ffi" suite...
Progress: 100%
ffi-napi:
2 028 ops/s, ±4.87% | slowest, 99.24% slower
ffi-rs:
318 467 ops/s, ±0.17% | fastest
Finished 2 cases!
Fastest: ffi-rs
Slowest: ffi-napi
Changelog
See CHANGELOG.md
Ecosystem
abstract-socket-rs
Install
$ npm i ffi-rs
Supported Types
Currently, ffi-rs only supports these types of parameters and return values. However, support for more types may be added in the future based on actual usage scenarios.
Basic Types
Reference Types
C++ Class
If you want to call a C++ function whose argument type is a class, you can use the pointer
type. See tutorial
Supported Platforms
Note: You need to make sure that the compilation environment of the dynamic library is the same as the installation and runtime environment of the ffi-rs
call.
- darwin-x64
- darwin-arm64
- linux-x64-gnu
- linux-x64-musl
- win32-x64-msvc
- win32-ia32-msvc
- win32-arm64-msvc
- linux-arm64-gnu
- linux-arm64-musl
- linux-arm-gnueabihf
Usage
View test.ts for the latest usage
Here is an example of how to use ffi-rs:
For the following C++ code, we compile this file into a dynamic library
Write Foreign Function Code
Note: The return value type of a function must be of type C
#include <cstdio>
#include <cstring>
#include <iostream>
#include <string>
extern "C" int sum(int a, int b) { return a + b; }
extern "C" double doubleSum(double a, double b) { return a + b; }
extern "C" const char *concatenateStrings(const char *str1, const char *str2) {
std::string result = std::string(str1) + std::string(str2);
char *cstr = new char[result.length() + 1];
strcpy(cstr, result.c_str());
return cstr;
}
extern "C" void noRet() { printf("%s", "hello world"); }
extern "C" bool return_opposite(bool input) { return !input; }
Compile C Code into a Dynamic Library
$ g++ -dynamiclib -o libsum.so cpp/sum.cpp
$ g++ -shared -o libsum.so cpp/sum.cpp
$ g++ -shared -o sum.dll cpp/sum.cpp
Call Dynamic Library Using ffi-rs
Then you can use ffi-rs
to invoke the dynamic library file that contains functions.
Initialization
It's suggested to develop with TypeScript to get type hints
const { equal } = require('assert')
const { load, DataType, open, close, arrayConstructor, define } = require('ffi-rs')
const a = 1
const b = 100
const dynamicLib = platform === 'win32' ? './sum.dll' : "./libsum.so"
open({
library: 'libsum',
path: dynamicLib
})
const r = load({
library: "libsum",
funcName: 'sum',
retType: DataType.I32,
paramsType: [DataType.I32, DataType.I32],
paramsValue: [a, b]
})
equal(r, a + b)
close('libsum')
const res = define({
sum: {
library: "libsum",
retType: DataType.I32,
paramsType: [DataType.I32, DataType.I32],
},
atoi: {
library: "libnative",
retType: DataType.I32,
paramsType: [DataType.String],
}
})
equal(res.sum([1, 2]), 3)
equal(res.atoi(["1000"]), 1000)
Load Main Program Handle
You can also pass an empty path string in the open
function like ffi-napi to get the main program handle. Refer to dlopen
open({
library: "libnative",
path: "",
});
equal(
load({
library: "libnative",
funcName: "atoi",
retType: DataType.I32,
paramsType: [DataType.String],
paramsValue: ["1000"],
}),
1000,
);
Basic Types
number|string|boolean|double|void
are basic types
const c = "foo"
const d = c.repeat(200)
equal(c + d, load({
library: 'libsum',
funcName: 'concatenateStrings',
retType: DataType.String,
paramsType: [DataType.String, DataType.String],
paramsValue: [c, d]
}))
equal(undefined, load({
library: 'libsum',
funcName: 'noRet',
retType: DataType.Void,
paramsType: [],
paramsValue: []
}))
equal(1.1 + 2.2, load({
library: 'libsum',
funcName: 'doubleSum',
retType: DataType.Double,
paramsType: [DataType.Double, DataType.Double],
paramsValue: [1.1, 2.2]
}))
const bool_val = true
equal(!bool_val, load({
library: 'libsum',
funcName: 'return_opposite',
retType: DataType.Boolean,
paramsType: [DataType.Boolean],
paramsValue: [bool_val],
}))
Buffer
In the latest version, ffi-rs
supports modifying data in place.
The sample code is as follows
extern int modifyData(char* buffer) {
}
const arr = Buffer.alloc(200)
const res = load({
library: "libsum",
funcName: "modifyData",
retType: DataType.I32,
paramsType: [
DataType.U8Array
],
paramsValue: [arr]
})
console.log(arr)
Array
When using array
as retType
, you should use arrayConstructor
to specify the array type with a legal length which is important.
If the length is incorrect, the program may exit abnormally
extern "C" int *createArrayi32(const int *arr, int size) {
int *vec = (int *)malloc((size) * sizeof(int));
for (int i = 0; i < size; i++) {
vec[i] = arr[i];
}
return vec;
}
extern "C" double *createArrayDouble(const double *arr, int size) {
double *vec = (double *)malloc((size) * sizeof(double));
for (int i = 0; i < size; i++) {
vec[i] = arr[i];
}
return vec;
}
extern "C" char **createArrayString(char **arr, int size) {
char **vec = (char **)malloc((size) * sizeof(char *));
for (int i = 0; i < size; i++) {
vec[i] = arr[i];
}
return vec;
}
let bigArr = new Array(100).fill(100)
deepStrictEqual(bigArr, load({
library: 'libsum',
funcName: 'createArrayi32',
retType: arrayConstructor({ type: DataType.I32Array, length: bigArr.length }),
paramsType: [DataType.I32Array, DataType.I32],
paramsValue: [bigArr, bigArr.length],
}))
let bigDoubleArr = new Array(5).fill(1.1)
deepStrictEqual(bigDoubleArr, load({
library: 'libsum',
funcName: 'createArrayDouble',
retType: arrayConstructor({ type: DataType.DoubleArray, length: bigDoubleArr.length }),
paramsType: [DataType.DoubleArray, DataType.I32],
paramsValue: [bigDoubleArr, bigDoubleArr.length],
}))
let stringArr = [c, c.repeat(20)]
deepStrictEqual(stringArr, load({
library: 'libsum',
funcName: 'createArrayString',
retType: arrayConstructor({ type: DataType.StringArray, length: stringArr.length }),
paramsType: [DataType.StringArray, DataType.I32],
paramsValue: [stringArr, stringArr.length],
}))
Pointer
In ffi-rs
, we use DataType.External for wrapping the pointer
which enables it to be passed between Node.js
and C
.
Pointer
is complicated and underlying, ffi-rs
provides four functions to handle this pointer including createPointer
, restorePointer
, unwrapPointer
, wrapPointer
, freePointer
for different scenes.
extern "C" const char *concatenateStrings(const char *str1, const char *str2) {
std::string result = std::string(str1) + std::string(str2);
char *cstr = new char[result.length() + 1];
strcpy(cstr, result.c_str());
return cstr;
}
extern "C" char *getStringFromPtr(void *ptr) { return (char *)ptr; };
const ptr = load({
library: "libsum",
funcName: "concatenateStrings",
retType: DataType.External,
paramsType: [DataType.String, DataType.String],
paramsValue: [c, d],
})
const string = load({
library: "libsum",
funcName: "getStringFromPtr",
retType: DataType.String,
paramsType: [DataType.External],
paramsValue: [ptr],
})
createPointer
createPointer
function is used for creating a pointer pointing to a specified type. In order to avoid mistakes, developers have to understand what type this pointer is.
For numeric types like i32|u8|i64|f64
, createPointer will create a pointer like *mut i32
pointing to these numbers.
For types that are originally pointer types like char *
representing string
type in C
, createPointer will create a dual pointer like *mut *mut c_char
pointing to *mut c_char
. Developers can use unwrapPointer
to get the internal pointer *mut c_char
.
let bigDoubleArr = new Array(5).fill(1.1);
deepStrictEqual(
bigDoubleArr,
load({
library: "libsum",
funcName: "createArrayDouble",
retType: arrayConstructor({
type: DataType.DoubleArray,
length: bigDoubleArr.length,
}),
paramsType: [DataType.DoubleArray, DataType.I32],
paramsValue: [bigDoubleArr, bigDoubleArr.length],
}),
);
For the code above, we can use createPointer
function to wrap a pointer data and send it as paramsValue
const ptrArr: unknown[] = createPointer({
paramsType: [DataType.DoubleArray],
paramsValue: [[1.1,2.2]]
})
load({
library: "libsum",
funcName: "createArrayDouble",
retType: arrayConstructor({
type: DataType.DoubleArray,
length: bigDoubleArr.length,
}),
paramsType: [DataType.External, DataType.I32],
paramsValue: [unwrapPointer(ptrArr)[0], bigDoubleArr.length],
})
The two pieces of code above are equivalent
restorePointer
Similarly, you can use restorePointer
to restore data from a pointer
which is wrapped by createPointer
or as a return value of a foreign function
const pointerArr = createPointer({
paramsType: [DataType.DoubleArray],
paramsValue: [[1.1, 2.2]]
})
const restoreData = restorePointer({
retType: [arrayConstructor({
type: DataType.DoubleArray,
length: 2
})],
paramsValue: pointerArr
})
deepStrictEqual(restoreData, [[1.1, 2.2]])
freePointer
freePointer
is used to free memory which is not freed automatically.
By default, ffi-rs
will free data memory for ffi call args and return result to prevent memory leaks. Except in the following cases:
- set
freeResultMemory: false
when calling load
method
If you set freeResultMemory to false, ffi-rs
will not release the return result memory which was allocated in the C environment
- Use
DataType.External
as paramsType or retType
If developers use DataType.External
as paramsType or retType, please use freePointer
to release the memory of the pointer. ref test.ts
wrapPointer
wrapPointer
is used to create multiple pointers.
For example, developers can use wrapPointer
to create a pointer pointing to other existing pointers.
const { wrapPointer } = require('ffi-rs')
const ptr = load({
library: "libsum",
funcName: "concatenateStrings",
retType: DataType.External,
paramsType: [DataType.String, DataType.String],
paramsValue: [c, d],
})
const wrapPtr = wrapPointer([ptr])[0]
unwrapPointer
unwrapPointer
is opposite to wrapPointer
which is used to get the internal pointer for multiple pointers
const { unwrapPointer, createPointer } = require('ffi-rs')
let ptr = createPointer({
paramsType: [DataType.String],
paramsValue: ["foo"]
})
const unwrapPtr = unwrapPointer([ptr])[0]
Struct
To create a C struct or get a C struct as a return type, you need to define the types of the parameters strictly in the order in which the fields of the C structure are defined.
ffi-rs
provides a C struct named Person
with many types of fields in sum.cpp
The example call method about how to call a foreign function to create a Person
struct or use Person
struct as a return value is here
Use array in struct
There are two types of arrays in C language like int* array
and int array[100]
that have some different usages.
The first type int* array
is a pointer type storing the first address of the array.
The second type int array[100]
is a fixed-length array and each element in the array has a continuous address.
If you use an array as a function parameter, this usually passes an array pointer regardless of which type you define. But if the array type is defined in a struct, the two types of array definitions will cause different sizes and alignments of the struct.
So, ffi-rs
needs to distinguish between the two types.
By default, ffi-rs
uses pointer arrays to calculate struct. If you confirm there should be a static array, you can define it in this way:
typedef struct Person {
uint8_t staticBytes[16];
} Person;
staticBytes: arrayConstructor({
type: DataType.U8Array,
length: parent.staticBytes.length,
dynamicArray: false
}),
Function
ffi-rs
supports passing JS function pointers to C functions, like this:
typedef const void (*FunctionPointer)(int a, bool b, char *c, double d,
char **e, int *f, Person *g);
extern "C" void callFunction(FunctionPointer func) {
printf("callFunction\n");
for (int i = 0; i < 2; i++) {
int a = 100;
bool b = false;
double d = 100.11;
char *c = (char *)malloc(14 * sizeof(char));
strcpy(c, "Hello, World!");
char **stringArray = (char **)malloc(sizeof(char *) * 2);
stringArray[0] = strdup("Hello");
stringArray[1] = strdup("world");
int *i32Array = (int *)malloc(sizeof(int) * 3);
i32Array[0] = 101;
i32Array[1] = 202;
i32Array[2] = 303;
Person *p = createPerson();
func(a, b, c, d, stringArray, i32Array, p);
}
}
Corresponding to the code above, you can use ffi-rs
like this:
const testFunction = () => {
const func = (a, b, c, d, e, f, g) => {
equal(a, 100);
equal(b, false);
equal(c, "Hello, World!");
equal(d, "100.11");
deepStrictEqual(e, ["Hello", "world"]);
deepStrictEqual(f, [101, 202, 303]);
deepStrictEqual(g, person);
logGreen("test function succeed");
freePointer({
paramsType: [funcConstructor({
paramsType: [
DataType.I32,
DataType.Boolean,
DataType.String,
DataType.Double,
arrayConstructor({ type: DataType.StringArray, length: 2 }),
arrayConstructor({ type: DataType.I32Array, length: 3 }),
personType,
],
retType: DataType.Void,
})],
paramsValue: funcExternal
})
if (!process.env.MEMORY) {
close("libsum");
}
};
const funcExternal = createPointer({
paramsType: [funcConstructor({
paramsType: [
DataType.I32,
DataType.Boolean,
DataType.String,
DataType.Double,
arrayConstructor({ type: DataType.StringArray, length: 2 }),
arrayConstructor({ type: DataType.I32Array, length: 3 }),
personType,
],
retType: DataType.Void,
})],
paramsValue: [func]
})
load({
library: "libsum",
funcName: "callFunction",
retType: DataType.Void,
paramsType: [
DataType.External,
],
paramsValue: unwrapPointer(funcExternal),
});
}
The function parameters support all types in the example above.
Attention: since the vast majority of scenarios developers pass JS functions to C as callbacks, ffi-rs
will create threadsafe_function from JS functions which means the JS function will be called asynchronously, and the Node.js process will not exit automatically.
C++
We'll provide more examples from real-world scenarios. If you have any ideas, please submit an issue.
Class type
In C++ scenarios, we can use DataType.External
to get a class type pointer.
In the code below, we use C types to wrap C++ types such as converting char *
to std::string
and returning a class pointer:
MyClass *createMyClass(std::string name, int age) {
return new MyClass(name, age);
}
extern "C" MyClass *createMyClassFromC(const char *name, int age) {
return createMyClass(std::string(name), age);
}
extern "C" void printMyClass(MyClass *instance) { instance->print(); }
And then, it can be called by the following code:
const classPointer = load({
library: "libsum",
funcName: "createMyClassFromC",
retType: DataType.External,
paramsType: [
DataType.String,
DataType.I32
],
paramsValue: ["classString", 26],
});
load({
library: "libsum",
funcName: "printMyClass",
retType: DataType.External,
paramsType: [
DataType.External,
],
paramsValue: [classPointer],
})
freePointer({
paramsType: [DataType.External],
paramsValue: [classPointer],
pointerType: PointerType.CPointer
})
errno
By default, ffi-rs
will not output errno info. Developers can get it by passing errno: true
when calling the open method like:
load({
library: 'libnative',
funcName: 'setsockopt',
retType: DataType.I32,
paramsType: [DataType.I32, DataType.I32, DataType.I32, DataType.External, DataType.I32],
paramsValue: [socket._handle.fd, level, option, pointer[0], 4],
errno: true
})
Memory Management
It's important to free the memory allocations during a single ffi call to prevent memory leaks.
What kinds of data memory are allocated in this?
- Call parameters in the Rust environment which are allocated in the heap like
String
- Return value which in the C environment which are allocated in the heap like
char*
By default, ffi-rs
will free call parameters memory which are allocated in Rust.
But it will not free the return value from the C side since some C dynamic libraries will manage their memory automatically (when ffi-rs >= 1.0.79)
There are two ways to prevent ffi-rs
from releasing memory:
- Set
freeResultMemory: false
when calling load
method, the default value is false
If you set freeResultMemory to false, ffi-rs
will not release the return result memory which was allocated in the C environment
- Use
DataType.External
as paramsType or retType
If developers use DataType.External
as paramsType or retType, please use freePointer
to release the memory of the pointer when this memory is no longer in use. ref test.ts
runInNewThread
ffi-rs
supports running ffi tasks in a new thread without blocking the main thread, which is useful for CPU-intensive tasks.
To use this feature, you can pass the runInNewThread
option to the load method:
const testRunInNewThread = async () => {
load({
library: "libsum",
funcName: "sum",
retType: DataType.I32,
paramsType: [DataType.I32, DataType.I32],
paramsValue: [1, 2],
runInNewThread: true,
}).then(res => {
equal(res, 3)
})
}