normalizr
Normalizes deeply nested JSON API responses according to a schema for Flux and Redux apps.
Kudos to Jing Chen for suggesting this approach.
Installation
npm install --save normalizr
Sample App
Flux
See flux-react-router-example.
Redux
See redux/examples/real-world.
The Problem
- You have a JSON API that returns deeply nested objects;
- You want to port your app to Flux or Redux;
- You noticed it's hard for Stores (or Reducers) to consume data from nested API responses.
Normalizr takes JSON and a schema and replaces nested entities with their IDs, gathering all entities in dictionaries.
For example,
[{
id: 1,
title: 'Some Article',
author: {
id: 1,
name: 'Dan'
}
}, {
id: 2,
title: 'Other Article',
author: {
id: 1,
name: 'Dan'
}
}]
can be normalized to
{
result: [1, 2],
entities: {
articles: {
1: {
id: 1,
title: 'Some Article',
author: 1
},
2: {
id: 2,
title: 'Other Article',
author: 1
}
},
users: {
1: {
id: 1,
name: 'Dan'
}
}
}
}
Note the flat structure (all nesting is gone).
Features
- Entities can be nested inside other entities, objects and arrays;
- Combine entity schemas to express any kind of API response;
- Entities with same IDs are automatically merged (with a warning if they differ);
- Allows using a custom ID attribute (e.g. slug).
Usage
import { normalize, Schema, arrayOf } from 'normalizr';
First, define a schema for our entities:
const article = new Schema('articles');
const user = new Schema('users');
const collection = new Schema('collections');
Then we define nesting rules:
article.define({
author: user,
collections: arrayOf(collection)
});
collection.define({
curator: user
});
Now we can use this schema in our API response handlers:
const ServerActionCreators = {
receiveArticles(response) {
response = normalize(response, {
articles: arrayOf(article)
});
AppDispatcher.handleServerAction({
type: ActionTypes.RECEIVE_ARTICLES,
response
});
},
receiveUsers(response) {
response = normalize(response, {
users: arrayOf(user)
});
AppDispatcher.handleServerAction({
type: ActionTypes.RECEIVE_USERS,
response
});
}
}
Finally, different Stores can tune in to listen to all API responses and grab entity lists from action.response.entities
:
AppDispatcher.register((payload) => {
const { action } = payload;
if (action.response && action.response.entities && action.response.entities.users) {
mergeUsers(action.response.entities.users);
UserStore.emitChange();
break;
}
});
API Reference
new Schema(key, [options])
Schema lets you define a type of entity returned by your API.
This should correspond to model in your server code.
The key
parameter lets you specify the name of the dictionary for this kind of entity.
const article = new Schema('articles');
const article = new Schema('articles', { idAttribute: 'slug' });
function generateSlug(entity) { }
const article = new Schema('articles', { idAttribute: generateSlug });
Schema.prototype.define(nestedSchema)
Lets you specify relationships between different entities.
const article = new Schema('articles');
const user = new Schema('users');
article.define({
author: user
});
arrayOf(schema, [options])
Describes an array of the schema passed as argument.
const article = new Schema('articles');
const user = new Schema('users');
article.define({
author: user,
contributors: arrayOf(user)
});
If the array contains entities with different schemas, you can use the schemaAttribute
option to specify which schema to use for each entity:
const article = new Schema('articles');
const image = new Schema('images');
const video = new Schema('videos');
const asset = {
images: image,
videos: video
};
article.define({
assets: arrayOf(asset, { schemaAttribute: 'type' })
});
function inferSchema(entity) { }
article.define({
assets: arrayOf(asset, { schemaAttribute: inferSchema })
});
valuesOf(schema, [options])
Describes a map whose values follow the schema passed as argument.
const article = new Schema('articles');
const user = new Schema('users');
article.define({
collaboratorsByRole: valuesOf(user)
});
If the map contains entities with different schemas, you can use the schemaAttribute
option to specify which schema to use for each entity:
const article = new Schema('articles');
const user = new Schema('images');
const group = new Schema('videos');
const collaborator = {
users: user,
groups: group
};
article.define({
collaboratorsByRole: valuesOf(collaborator, { schemaAttribute: 'type' })
});
function inferSchema(entity) { }
article.define({
collaboratorsByRole: valuesOf(collaborator, { schemaAttribute: inferSchema })
});
normalize(obj, schema, [options])
Normalizes object according to schema.
Passed schema
should be a nested object reflecting the structure of API response.
You may optionally specify any of the following options:
-
assignEntity
(function): This is useful if your backend emits additional fields, such as separate ID fields, you'd like to delete in the normalized entity. See the test and the discussion for a usage example.
-
mergeIntoEntity
(function): You can use this to resolve conflicts when merging entities with the same key. See the test and the discussion for a usage example.
const article = new Schema('articles');
const user = new Schema('users');
article.define({
author: user,
contributors: arrayOf(user),
meta: {
likes: arrayOf({
user: user
})
}
});
const json = getArticleArray();
const normalized = normalize(json, arrayOf(article));
Explanation by Example
Say, you have /articles
API with the following schema:
articles: article*
article: {
author: user,
likers: user*
primary_collection: collection?
collections: collection*
}
collection: {
curator: user
}
Without normalizr, your Stores would need to know too much about API response schema.
For example, UserStore
would include a lot of boilerplate to extract fresh user info when articles are fetched:
AppDispatcher.register((payload) => {
const { action } = payload;
switch (action.type) {
case ActionTypes.RECEIVE_USERS:
mergeUsers(action.rawUsers);
break;
case ActionTypes.RECEIVE_ARTICLES:
action.rawArticles.forEach(rawArticle => {
mergeUsers([rawArticle.user]);
mergeUsers(rawArticle.likers);
mergeUsers([rawArticle.primaryCollection.curator]);
rawArticle.collections.forEach(rawCollection => {
mergeUsers(rawCollection.curator);
});
});
UserStore.emitChange();
break;
}
});
Normalizr solves the problem by converting API responses to a flat form where nested entities are replaced with IDs:
{
result: [12, 10, 3, ...],
entities: {
articles: {
12: {
authorId: 3,
likers: [2, 1, 4],
primaryCollection: 12,
collections: [12, 11]
},
...
},
users: {
3: {
name: 'Dan'
},
2: ...,
4: ....
},
collections: {
12: {
curator: 2,
name: 'Stuff'
},
...
}
}
}
Then UserStore
code can be rewritten as:
AppDispatcher.register((payload) => {
const { action } = payload;
if (action.response && action.response.entities && action.response.entities.users) {
mergeUsers(action.response.entities.users);
UserStore.emitChange();
break;
}
});
Dependencies
lodash
for isObject
, isEqual
and mapValues
Running Tests
git clone https://github.com/gaearon/normalizr.git
cd normalizr
npm install
npm test # run tests once
npm run test:watch # run test watcher