Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

opencv4nodejs-prebuilt-install

Package Overview
Dependencies
Maintainers
1
Versions
23
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

opencv4nodejs-prebuilt-install - npm Package Compare versions

Comparing version 4.1.146 to 4.1.147

4

package.json
{
"name": "opencv4nodejs-prebuilt-install",
"version": "4.1.146",
"version": "4.1.147",
"description": "Asynchronous OpenCV 4.x nodejs bindings with JavaScript and TypeScript API.",

@@ -46,3 +46,3 @@ "keywords": [

"engines": {
"node": ">=12.0.0 <20.0.0"
"node": ">=12.0.0 <21.0.0"
},

@@ -49,0 +49,0 @@ "os": [

@@ -1,6 +0,6 @@

# opencv4nodejs-prebuilt-install
# opencv4nodejs-prebuilt-install special build for template matching
![Tested](https://github.com/udarrr/opencv4nodejs-prebuilt-install/workflows/Tests/badge.svg)
![Released](https://github.com/udarrr/opencv4nodejs-prebuilt-install/workflows/Create%20tagged%20release/badge.svg)
![Supported node versions](https://img.shields.io/badge/node-12%2C%2013%2C%2014%2C%2015%2C%2016%2C%2017%2C%2018%2C%2019-green)
![Supported node versions](https://img.shields.io/badge/node-12%2C%2013%2C%2014%2C%2015%2C%2016%2C%2017%2C%2018%2C%2019%2C%2020-green)
![Supported electron versions](https://img.shields.io/badge/electron-8%2C%209%2C%2010%2C%2011%2C%2012%2C%2013%2C%2014%2C%2015%2C%2016%2C%2017%2C%2018%2C%2019-green)

@@ -15,3 +15,3 @@

- Windows, Linux , MacOS
- node 12,13,14,15,16,17,18,19
- node 12,13,14,15,16,17,18,19,20
- arh x64

@@ -27,5 +27,3 @@

- **[Quick Start](#quick-start)**
- **[Async API](#async-api)**
- **[With TypeScript](#with-typescript)**
- **[External Memory Tracking (v4.0.0)](#external-mem-tracking)**

@@ -36,74 +34,2 @@ ## Examples

### Face Detection
![face0](https://user-images.githubusercontent.com/31125521/29702727-c796acc4-8972-11e7-8043-117dd2761833.jpg)
![face1](https://user-images.githubusercontent.com/31125521/29702730-c79d3904-8972-11e7-8ccb-e8c467244ad8.jpg)
### Face Recognition with the OpenCV face module
Check out [Node.js + OpenCV for Face Recognition](https://medium.com/@muehler.v/node-js-opencv-for-face-recognition-37fa7cb860e8)</b></a>.
![facerec](https://user-images.githubusercontent.com/31125521/35453007-eac9d516-02c8-11e8-9c4d-a77c01ae1f77.jpg)
### Face Landmarks with the OpenCV face module
![facelandmarks](https://user-images.githubusercontent.com/31125521/39297394-af14ae26-4943-11e8-845a-a06cbfa28d5a.jpg)
### Face Recognition with [face-recognition.js](https://github.com/justadudewhohacks/face-recognition.js)
Check out [Node.js + face-recognition.js : Simple and Robust Face Recognition using Deep Learning](https://medium.com/@muehler.v/node-js-face-recognition-js-simple-and-robust-face-recognition-using-deep-learning-ea5ba8e852).
[![IMAGE ALT TEXT](https://user-images.githubusercontent.com/31125521/35453884-055f3bde-02cc-11e8-8fa6-945f320652c3.jpg)](https://www.youtube.com/watch?v=ArcFHpX-usQ "Nodejs Face Recognition using face-recognition.js and opencv4nodejs")
### Hand Gesture Recognition
Check out [Simple Hand Gesture Recognition using OpenCV and JavaScript](https://medium.com/@muehler.v/simple-hand-gesture-recognition-using-opencv-and-javascript-eb3d6ced28a0).
![gesture-rec_sm](https://user-images.githubusercontent.com/31125521/30052864-41bd5680-9227-11e7-8a62-6205f3d99d5c.gif)
### Object Recognition with Deep Neural Networks
Check out [Node.js meets OpenCV’s Deep Neural Networks — Fun with Tensorflow and Caffe](https://medium.com/@muehler.v/node-js-meets-opencvs-deep-neural-networks-fun-with-tensorflow-and-caffe-ff8d52a0f072).
#### Tensorflow Inception
![husky](https://user-images.githubusercontent.com/31125521/32703295-f6b0e7ee-c7f3-11e7-8039-b3ada21810a0.jpg)
![car](https://user-images.githubusercontent.com/31125521/32703296-f6cea892-c7f3-11e7-8aaa-9fe48b88fe05.jpeg)
![banana](https://user-images.githubusercontent.com/31125521/32703297-f6e932ca-c7f3-11e7-9a66-bbc826ebf007.jpg)
#### Single Shot Multibox Detector with COCO
![dishes-detection](https://user-images.githubusercontent.com/31125521/32703228-eae787d4-c7f2-11e7-8323-ea0265deccb3.jpg)
![car-detection](https://user-images.githubusercontent.com/31125521/32703229-eb081e36-c7f2-11e7-8b26-4d253b4702b4.jpg)
### Machine Learning
Check out [Machine Learning with OpenCV and JavaScript: Recognizing Handwritten Letters using HOG and SVM](https://medium.com/@muehler.v/machine-learning-with-opencv-and-javascript-part-1-recognizing-handwritten-letters-using-hog-and-88719b70efaa).
![resulttable](https://user-images.githubusercontent.com/31125521/30635645-5a466ea8-9df3-11e7-8498-527e1293c4fa.png)
### Object Tracking
![trackbgsubtract](https://user-images.githubusercontent.com/31125521/29702733-c7b59864-8972-11e7-996b-d28cb508f3b8.gif)
![trackbycolor](https://user-images.githubusercontent.com/31125521/29702735-c8057686-8972-11e7-9c8d-13e30ab74628.gif)
### Feature Matching
![matchsift](https://user-images.githubusercontent.com/31125521/29702731-c79e3142-8972-11e7-947e-db109d415469.jpg)
### Image Histogram
![plotbgr](https://user-images.githubusercontent.com/31125521/29995016-1b847970-8fdf-11e7-9316-4eb0fd550adc.jpg)
![plotgray](https://user-images.githubusercontent.com/31125521/29995015-1b83e06e-8fdf-11e7-8fa8-5d18326b9cd3.jpg)
### Boiler plate for combination of opencv4nodejs, express and websockets
[opencv4nodejs-express-websockets](https://github.com/Mudassir-23/opencv4nodejs-express-websockets) - Boilerplate express app for getting started on opencv with nodejs and to live stream the video through websockets.
### Automating lights by people detection through classifier
Check out [Automating lights with Computer Vision & NodeJS](https://medium.com/softway-blog/automating-lights-with-computer-vision-nodejs-fb9b614b75b2).
![user-presence](https://user-images.githubusercontent.com/34403479/70385871-8d62e680-19b7-11ea-855c-3b2febfdbd72.png)
## Quick Start

@@ -115,274 +41,2 @@

### Initializing Mat (image matrix), Vec, Point
``` javascript
const rows = 100; // height
const cols = 100; // width
// empty Mat
const emptyMat = new cv.Mat(rows, cols, cv.CV_8UC3);
// fill the Mat with default value
const whiteMat = new cv.Mat(rows, cols, cv.CV_8UC1, 255);
const blueMat = new cv.Mat(rows, cols, cv.CV_8UC3, [255, 0, 0]);
// from array (3x3 Matrix, 3 channels)
const matData = [
[[255, 0, 0], [255, 0, 0], [255, 0, 0]],
[[0, 0, 0], [0, 0, 0], [0, 0, 0]],
[[255, 0, 0], [255, 0, 0], [255, 0, 0]]
];
const matFromArray = new cv.Mat(matData, cv.CV_8UC3);
// from node buffer
const charData = [255, 0, ...];
const matFromArray = new cv.Mat(Buffer.from(charData), rows, cols, cv.CV_8UC3);
// Point
const pt2 = new cv.Point(100, 100);
const pt3 = new cv.Point(100, 100, 0.5);
// Vector
const vec2 = new cv.Vec(100, 100);
const vec3 = new cv.Vec(100, 100, 0.5);
const vec4 = new cv.Vec(100, 100, 0.5, 0.5);
```
### Mat and Vec operations
``` javascript
const mat0 = new cv.Mat(...);
const mat1 = new cv.Mat(...);
// arithmetic operations for Mats and Vecs
const matMultipliedByScalar = mat0.mul(0.5); // scalar multiplication
const matDividedByScalar = mat0.div(2); // scalar division
const mat0PlusMat1 = mat0.add(mat1); // addition
const mat0MinusMat1 = mat0.sub(mat1); // subtraction
const mat0MulMat1 = mat0.hMul(mat1); // elementwise multiplication
const mat0DivMat1 = mat0.hDiv(mat1); // elementwise division
// logical operations Mat only
const mat0AndMat1 = mat0.and(mat1);
const mat0OrMat1 = mat0.or(mat1);
const mat0bwAndMat1 = mat0.bitwiseAnd(mat1);
const mat0bwOrMat1 = mat0.bitwiseOr(mat1);
const mat0bwXorMat1 = mat0.bitwiseXor(mat1);
const mat0bwNot = mat0.bitwiseNot();
```
### Accessing Mat data
``` javascript
const matBGR = new cv.Mat(..., cv.CV_8UC3);
const matGray = new cv.Mat(..., cv.CV_8UC1);
// get pixel value as vector or number value
const vec3 = matBGR.at(200, 100);
const grayVal = matGray.at(200, 100);
// get raw pixel value as array
const [b, g, r] = matBGR.atRaw(200, 100);
// set single pixel values
matBGR.set(50, 50, [255, 0, 0]);
matBGR.set(50, 50, new Vec(255, 0, 0));
matGray.set(50, 50, 255);
// get a 25x25 sub region of the Mat at offset (50, 50)
const width = 25;
const height = 25;
const region = matBGR.getRegion(new cv.Rect(50, 50, width, height));
// get a node buffer with raw Mat data
const matAsBuffer = matBGR.getData();
// get entire Mat data as JS array
const matAsArray = matBGR.getDataAsArray();
```
### IO
``` javascript
// load image from file
const mat = cv.imread('./path/img.jpg');
cv.imreadAsync('./path/img.jpg', (err, mat) => {
...
})
// save image
cv.imwrite('./path/img.png', mat);
cv.imwriteAsync('./path/img.jpg', mat, (err) => {
...
})
// show image
cv.imshow('a window name', mat);
cv.waitKey();
// load base64 encoded image
const base64text='..';//Base64 encoded string
const base64data =base64text.replace('data:image/jpeg;base64','')
.replace('data:image/png;base64','');//Strip image type prefix
const buffer = Buffer.from(base64data,'base64');
const image = cv.imdecode(buffer); //Image is now represented as Mat
// convert Mat to base64 encoded jpg image
const outBase64 = cv.imencode('.jpg', croppedImage).toString('base64'); // Perform base64 encoding
const htmlImg='<img src=data:image/jpeg;base64,'+outBase64 + '>'; //Create insert into HTML compatible <img> tag
// open capture from webcam
const devicePort = 0;
const wCap = new cv.VideoCapture(devicePort);
// open video capture
const vCap = new cv.VideoCapture('./path/video.mp4');
// read frames from capture
const frame = vCap.read();
vCap.readAsync((err, frame) => {
...
});
// loop through the capture
const delay = 10;
let done = false;
while (!done) {
let frame = vCap.read();
// loop back to start on end of stream reached
if (frame.empty) {
vCap.reset();
frame = vCap.read();
}
// ...
const key = cv.waitKey(delay);
done = key !== 255;
}
```
### Useful Mat methods
``` javascript
const matBGR = new cv.Mat(..., cv.CV_8UC3);
// convert types
const matSignedInt = matBGR.convertTo(cv.CV_32SC3);
const matDoublePrecision = matBGR.convertTo(cv.CV_64FC3);
// convert color space
const matGray = matBGR.bgrToGray();
const matHSV = matBGR.cvtColor(cv.COLOR_BGR2HSV);
const matLab = matBGR.cvtColor(cv.COLOR_BGR2Lab);
// resize
const matHalfSize = matBGR.rescale(0.5);
const mat100x100 = matBGR.resize(100, 100);
const matMaxDimIs100 = matBGR.resizeToMax(100);
// extract channels and create Mat from channels
const [matB, matG, matR] = matBGR.splitChannels();
const matRGB = new cv.Mat([matR, matB, matG]);
```
### Drawing a Mat into HTML Canvas
``` javascript
const img = ...
// convert your image to rgba color space
const matRGBA = img.channels === 1
? img.cvtColor(cv.COLOR_GRAY2RGBA)
: img.cvtColor(cv.COLOR_BGR2RGBA);
// create new ImageData from raw mat data
const imgData = new ImageData(
new Uint8ClampedArray(matRGBA.getData()),
img.cols,
img.rows
);
// set canvas dimensions
const canvas = document.getElementById('myCanvas');
canvas.height = img.rows;
canvas.width = img.cols;
// set image data
const ctx = canvas.getContext('2d');
ctx.putImageData(imgData, 0, 0);
```
### Method Interface
OpenCV method interface from official docs or src:
``` c++
void GaussianBlur(InputArray src, OutputArray dst, Size ksize, double sigmaX, double sigmaY = 0, int borderType = BORDER_DEFAULT);
```
translates to:
``` javascript
const src = new cv.Mat(...);
// invoke with required arguments
const dst0 = src.gaussianBlur(new cv.Size(5, 5), 1.2);
// with optional paramaters
const dst2 = src.gaussianBlur(new cv.Size(5, 5), 1.2, 0.8, cv.BORDER_REFLECT);
// or pass specific optional parameters
const optionalArgs = {
borderType: cv.BORDER_CONSTANT
};
const dst2 = src.gaussianBlur(new cv.Size(5, 5), 1.2, optionalArgs);
```
<a name="async-api"></a>
## Async API
The async API can be consumed by passing a callback as the last argument of the function call. By default, if an async method is called without passing a callback, the function call will yield a Promise.
### Async Face Detection
``` javascript
const classifier = new cv.CascadeClassifier(cv.HAAR_FRONTALFACE_ALT2);
// by nesting callbacks
cv.imreadAsync('./faceimg.jpg', (err, img) => {
if (err) { return console.error(err); }
const grayImg = img.bgrToGray();
classifier.detectMultiScaleAsync(grayImg, (err, res) => {
if (err) { return console.error(err); }
const { objects, numDetections } = res;
...
});
});
// via Promise
cv.imreadAsync('./faceimg.jpg')
.then(img =>
img.bgrToGrayAsync()
.then(grayImg => classifier.detectMultiScaleAsync(grayImg))
.then((res) => {
const { objects, numDetections } = res;
...
})
)
.catch(err => console.error(err));
// using async await
try {
const img = await cv.imreadAsync('./faceimg.jpg');
const grayImg = await img.bgrToGrayAsync();
const { objects, numDetections } = await classifier.detectMultiScaleAsync(grayImg);
...
} catch (err) {
console.error(err);
}
```
<a name="with-typescript"></a>
## With TypeScript

@@ -394,22 +48,2 @@

Check out the TypeScript [examples](https://github.com/urielch/opencv4nodejs/tree/master/examples).
<a name="external-mem-tracking"></a>
## External Memory Tracking (v4.0.0)
Since version 4.0.0 was released, external memory tracking has been enabled by default. Simply put, the memory allocated for Matrices (cv.Mat) will be manually reported to the node process. This solves the issue of inconsistent Garbage Collection, which could have resulted in spiking memory usage of the node process eventually leading to overflowing the RAM of your system, prior to version 4.0.0.
Note, that in doubt this feature can be **disabled** by setting an environment variable `OPENCV4NODEJS_DISABLE_EXTERNAL_MEM_TRACKING` before requiring the module:
``` bash
export OPENCV4NODEJS_DISABLE_EXTERNAL_MEM_TRACKING=1 // linux
set OPENCV4NODEJS_DISABLE_EXTERNAL_MEM_TRACKING=1 // windows
```
Or directly in your code:
``` javascript
process.env.OPENCV4NODEJS_DISABLE_EXTERNAL_MEM_TRACKING = 1
const cv = require('opencv4nodejs-prebuilt-install')
```
Check out the TypeScript [examples](https://github.com/urielch/opencv4nodejs/tree/master/examples).
SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc