opencv4nodejs-prebuilt-install
Advanced tools
Comparing version 4.1.146 to 4.1.147
{ | ||
"name": "opencv4nodejs-prebuilt-install", | ||
"version": "4.1.146", | ||
"version": "4.1.147", | ||
"description": "Asynchronous OpenCV 4.x nodejs bindings with JavaScript and TypeScript API.", | ||
@@ -46,3 +46,3 @@ "keywords": [ | ||
"engines": { | ||
"node": ">=12.0.0 <20.0.0" | ||
"node": ">=12.0.0 <21.0.0" | ||
}, | ||
@@ -49,0 +49,0 @@ "os": [ |
374
README.md
@@ -1,6 +0,6 @@ | ||
# opencv4nodejs-prebuilt-install | ||
# opencv4nodejs-prebuilt-install special build for template matching | ||
![Tested](https://github.com/udarrr/opencv4nodejs-prebuilt-install/workflows/Tests/badge.svg) | ||
![Released](https://github.com/udarrr/opencv4nodejs-prebuilt-install/workflows/Create%20tagged%20release/badge.svg) | ||
![Supported node versions](https://img.shields.io/badge/node-12%2C%2013%2C%2014%2C%2015%2C%2016%2C%2017%2C%2018%2C%2019-green) | ||
![Supported node versions](https://img.shields.io/badge/node-12%2C%2013%2C%2014%2C%2015%2C%2016%2C%2017%2C%2018%2C%2019%2C%2020-green) | ||
![Supported electron versions](https://img.shields.io/badge/electron-8%2C%209%2C%2010%2C%2011%2C%2012%2C%2013%2C%2014%2C%2015%2C%2016%2C%2017%2C%2018%2C%2019-green) | ||
@@ -15,3 +15,3 @@ | ||
- Windows, Linux , MacOS | ||
- node 12,13,14,15,16,17,18,19 | ||
- node 12,13,14,15,16,17,18,19,20 | ||
- arh x64 | ||
@@ -27,5 +27,3 @@ | ||
- **[Quick Start](#quick-start)** | ||
- **[Async API](#async-api)** | ||
- **[With TypeScript](#with-typescript)** | ||
- **[External Memory Tracking (v4.0.0)](#external-mem-tracking)** | ||
@@ -36,74 +34,2 @@ ## Examples | ||
### Face Detection | ||
![face0](https://user-images.githubusercontent.com/31125521/29702727-c796acc4-8972-11e7-8043-117dd2761833.jpg) | ||
![face1](https://user-images.githubusercontent.com/31125521/29702730-c79d3904-8972-11e7-8ccb-e8c467244ad8.jpg) | ||
### Face Recognition with the OpenCV face module | ||
Check out [Node.js + OpenCV for Face Recognition](https://medium.com/@muehler.v/node-js-opencv-for-face-recognition-37fa7cb860e8)</b></a>. | ||
![facerec](https://user-images.githubusercontent.com/31125521/35453007-eac9d516-02c8-11e8-9c4d-a77c01ae1f77.jpg) | ||
### Face Landmarks with the OpenCV face module | ||
![facelandmarks](https://user-images.githubusercontent.com/31125521/39297394-af14ae26-4943-11e8-845a-a06cbfa28d5a.jpg) | ||
### Face Recognition with [face-recognition.js](https://github.com/justadudewhohacks/face-recognition.js) | ||
Check out [Node.js + face-recognition.js : Simple and Robust Face Recognition using Deep Learning](https://medium.com/@muehler.v/node-js-face-recognition-js-simple-and-robust-face-recognition-using-deep-learning-ea5ba8e852). | ||
[![IMAGE ALT TEXT](https://user-images.githubusercontent.com/31125521/35453884-055f3bde-02cc-11e8-8fa6-945f320652c3.jpg)](https://www.youtube.com/watch?v=ArcFHpX-usQ "Nodejs Face Recognition using face-recognition.js and opencv4nodejs") | ||
### Hand Gesture Recognition | ||
Check out [Simple Hand Gesture Recognition using OpenCV and JavaScript](https://medium.com/@muehler.v/simple-hand-gesture-recognition-using-opencv-and-javascript-eb3d6ced28a0). | ||
![gesture-rec_sm](https://user-images.githubusercontent.com/31125521/30052864-41bd5680-9227-11e7-8a62-6205f3d99d5c.gif) | ||
### Object Recognition with Deep Neural Networks | ||
Check out [Node.js meets OpenCV’s Deep Neural Networks — Fun with Tensorflow and Caffe](https://medium.com/@muehler.v/node-js-meets-opencvs-deep-neural-networks-fun-with-tensorflow-and-caffe-ff8d52a0f072). | ||
#### Tensorflow Inception | ||
![husky](https://user-images.githubusercontent.com/31125521/32703295-f6b0e7ee-c7f3-11e7-8039-b3ada21810a0.jpg) | ||
![car](https://user-images.githubusercontent.com/31125521/32703296-f6cea892-c7f3-11e7-8aaa-9fe48b88fe05.jpeg) | ||
![banana](https://user-images.githubusercontent.com/31125521/32703297-f6e932ca-c7f3-11e7-9a66-bbc826ebf007.jpg) | ||
#### Single Shot Multibox Detector with COCO | ||
![dishes-detection](https://user-images.githubusercontent.com/31125521/32703228-eae787d4-c7f2-11e7-8323-ea0265deccb3.jpg) | ||
![car-detection](https://user-images.githubusercontent.com/31125521/32703229-eb081e36-c7f2-11e7-8b26-4d253b4702b4.jpg) | ||
### Machine Learning | ||
Check out [Machine Learning with OpenCV and JavaScript: Recognizing Handwritten Letters using HOG and SVM](https://medium.com/@muehler.v/machine-learning-with-opencv-and-javascript-part-1-recognizing-handwritten-letters-using-hog-and-88719b70efaa). | ||
![resulttable](https://user-images.githubusercontent.com/31125521/30635645-5a466ea8-9df3-11e7-8498-527e1293c4fa.png) | ||
### Object Tracking | ||
![trackbgsubtract](https://user-images.githubusercontent.com/31125521/29702733-c7b59864-8972-11e7-996b-d28cb508f3b8.gif) | ||
![trackbycolor](https://user-images.githubusercontent.com/31125521/29702735-c8057686-8972-11e7-9c8d-13e30ab74628.gif) | ||
### Feature Matching | ||
![matchsift](https://user-images.githubusercontent.com/31125521/29702731-c79e3142-8972-11e7-947e-db109d415469.jpg) | ||
### Image Histogram | ||
![plotbgr](https://user-images.githubusercontent.com/31125521/29995016-1b847970-8fdf-11e7-9316-4eb0fd550adc.jpg) | ||
![plotgray](https://user-images.githubusercontent.com/31125521/29995015-1b83e06e-8fdf-11e7-8fa8-5d18326b9cd3.jpg) | ||
### Boiler plate for combination of opencv4nodejs, express and websockets | ||
[opencv4nodejs-express-websockets](https://github.com/Mudassir-23/opencv4nodejs-express-websockets) - Boilerplate express app for getting started on opencv with nodejs and to live stream the video through websockets. | ||
### Automating lights by people detection through classifier | ||
Check out [Automating lights with Computer Vision & NodeJS](https://medium.com/softway-blog/automating-lights-with-computer-vision-nodejs-fb9b614b75b2). | ||
![user-presence](https://user-images.githubusercontent.com/34403479/70385871-8d62e680-19b7-11ea-855c-3b2febfdbd72.png) | ||
## Quick Start | ||
@@ -115,274 +41,2 @@ | ||
### Initializing Mat (image matrix), Vec, Point | ||
``` javascript | ||
const rows = 100; // height | ||
const cols = 100; // width | ||
// empty Mat | ||
const emptyMat = new cv.Mat(rows, cols, cv.CV_8UC3); | ||
// fill the Mat with default value | ||
const whiteMat = new cv.Mat(rows, cols, cv.CV_8UC1, 255); | ||
const blueMat = new cv.Mat(rows, cols, cv.CV_8UC3, [255, 0, 0]); | ||
// from array (3x3 Matrix, 3 channels) | ||
const matData = [ | ||
[[255, 0, 0], [255, 0, 0], [255, 0, 0]], | ||
[[0, 0, 0], [0, 0, 0], [0, 0, 0]], | ||
[[255, 0, 0], [255, 0, 0], [255, 0, 0]] | ||
]; | ||
const matFromArray = new cv.Mat(matData, cv.CV_8UC3); | ||
// from node buffer | ||
const charData = [255, 0, ...]; | ||
const matFromArray = new cv.Mat(Buffer.from(charData), rows, cols, cv.CV_8UC3); | ||
// Point | ||
const pt2 = new cv.Point(100, 100); | ||
const pt3 = new cv.Point(100, 100, 0.5); | ||
// Vector | ||
const vec2 = new cv.Vec(100, 100); | ||
const vec3 = new cv.Vec(100, 100, 0.5); | ||
const vec4 = new cv.Vec(100, 100, 0.5, 0.5); | ||
``` | ||
### Mat and Vec operations | ||
``` javascript | ||
const mat0 = new cv.Mat(...); | ||
const mat1 = new cv.Mat(...); | ||
// arithmetic operations for Mats and Vecs | ||
const matMultipliedByScalar = mat0.mul(0.5); // scalar multiplication | ||
const matDividedByScalar = mat0.div(2); // scalar division | ||
const mat0PlusMat1 = mat0.add(mat1); // addition | ||
const mat0MinusMat1 = mat0.sub(mat1); // subtraction | ||
const mat0MulMat1 = mat0.hMul(mat1); // elementwise multiplication | ||
const mat0DivMat1 = mat0.hDiv(mat1); // elementwise division | ||
// logical operations Mat only | ||
const mat0AndMat1 = mat0.and(mat1); | ||
const mat0OrMat1 = mat0.or(mat1); | ||
const mat0bwAndMat1 = mat0.bitwiseAnd(mat1); | ||
const mat0bwOrMat1 = mat0.bitwiseOr(mat1); | ||
const mat0bwXorMat1 = mat0.bitwiseXor(mat1); | ||
const mat0bwNot = mat0.bitwiseNot(); | ||
``` | ||
### Accessing Mat data | ||
``` javascript | ||
const matBGR = new cv.Mat(..., cv.CV_8UC3); | ||
const matGray = new cv.Mat(..., cv.CV_8UC1); | ||
// get pixel value as vector or number value | ||
const vec3 = matBGR.at(200, 100); | ||
const grayVal = matGray.at(200, 100); | ||
// get raw pixel value as array | ||
const [b, g, r] = matBGR.atRaw(200, 100); | ||
// set single pixel values | ||
matBGR.set(50, 50, [255, 0, 0]); | ||
matBGR.set(50, 50, new Vec(255, 0, 0)); | ||
matGray.set(50, 50, 255); | ||
// get a 25x25 sub region of the Mat at offset (50, 50) | ||
const width = 25; | ||
const height = 25; | ||
const region = matBGR.getRegion(new cv.Rect(50, 50, width, height)); | ||
// get a node buffer with raw Mat data | ||
const matAsBuffer = matBGR.getData(); | ||
// get entire Mat data as JS array | ||
const matAsArray = matBGR.getDataAsArray(); | ||
``` | ||
### IO | ||
``` javascript | ||
// load image from file | ||
const mat = cv.imread('./path/img.jpg'); | ||
cv.imreadAsync('./path/img.jpg', (err, mat) => { | ||
... | ||
}) | ||
// save image | ||
cv.imwrite('./path/img.png', mat); | ||
cv.imwriteAsync('./path/img.jpg', mat, (err) => { | ||
... | ||
}) | ||
// show image | ||
cv.imshow('a window name', mat); | ||
cv.waitKey(); | ||
// load base64 encoded image | ||
const base64text='..';//Base64 encoded string | ||
const base64data =base64text.replace('data:image/jpeg;base64','') | ||
.replace('data:image/png;base64','');//Strip image type prefix | ||
const buffer = Buffer.from(base64data,'base64'); | ||
const image = cv.imdecode(buffer); //Image is now represented as Mat | ||
// convert Mat to base64 encoded jpg image | ||
const outBase64 = cv.imencode('.jpg', croppedImage).toString('base64'); // Perform base64 encoding | ||
const htmlImg='<img src=data:image/jpeg;base64,'+outBase64 + '>'; //Create insert into HTML compatible <img> tag | ||
// open capture from webcam | ||
const devicePort = 0; | ||
const wCap = new cv.VideoCapture(devicePort); | ||
// open video capture | ||
const vCap = new cv.VideoCapture('./path/video.mp4'); | ||
// read frames from capture | ||
const frame = vCap.read(); | ||
vCap.readAsync((err, frame) => { | ||
... | ||
}); | ||
// loop through the capture | ||
const delay = 10; | ||
let done = false; | ||
while (!done) { | ||
let frame = vCap.read(); | ||
// loop back to start on end of stream reached | ||
if (frame.empty) { | ||
vCap.reset(); | ||
frame = vCap.read(); | ||
} | ||
// ... | ||
const key = cv.waitKey(delay); | ||
done = key !== 255; | ||
} | ||
``` | ||
### Useful Mat methods | ||
``` javascript | ||
const matBGR = new cv.Mat(..., cv.CV_8UC3); | ||
// convert types | ||
const matSignedInt = matBGR.convertTo(cv.CV_32SC3); | ||
const matDoublePrecision = matBGR.convertTo(cv.CV_64FC3); | ||
// convert color space | ||
const matGray = matBGR.bgrToGray(); | ||
const matHSV = matBGR.cvtColor(cv.COLOR_BGR2HSV); | ||
const matLab = matBGR.cvtColor(cv.COLOR_BGR2Lab); | ||
// resize | ||
const matHalfSize = matBGR.rescale(0.5); | ||
const mat100x100 = matBGR.resize(100, 100); | ||
const matMaxDimIs100 = matBGR.resizeToMax(100); | ||
// extract channels and create Mat from channels | ||
const [matB, matG, matR] = matBGR.splitChannels(); | ||
const matRGB = new cv.Mat([matR, matB, matG]); | ||
``` | ||
### Drawing a Mat into HTML Canvas | ||
``` javascript | ||
const img = ... | ||
// convert your image to rgba color space | ||
const matRGBA = img.channels === 1 | ||
? img.cvtColor(cv.COLOR_GRAY2RGBA) | ||
: img.cvtColor(cv.COLOR_BGR2RGBA); | ||
// create new ImageData from raw mat data | ||
const imgData = new ImageData( | ||
new Uint8ClampedArray(matRGBA.getData()), | ||
img.cols, | ||
img.rows | ||
); | ||
// set canvas dimensions | ||
const canvas = document.getElementById('myCanvas'); | ||
canvas.height = img.rows; | ||
canvas.width = img.cols; | ||
// set image data | ||
const ctx = canvas.getContext('2d'); | ||
ctx.putImageData(imgData, 0, 0); | ||
``` | ||
### Method Interface | ||
OpenCV method interface from official docs or src: | ||
``` c++ | ||
void GaussianBlur(InputArray src, OutputArray dst, Size ksize, double sigmaX, double sigmaY = 0, int borderType = BORDER_DEFAULT); | ||
``` | ||
translates to: | ||
``` javascript | ||
const src = new cv.Mat(...); | ||
// invoke with required arguments | ||
const dst0 = src.gaussianBlur(new cv.Size(5, 5), 1.2); | ||
// with optional paramaters | ||
const dst2 = src.gaussianBlur(new cv.Size(5, 5), 1.2, 0.8, cv.BORDER_REFLECT); | ||
// or pass specific optional parameters | ||
const optionalArgs = { | ||
borderType: cv.BORDER_CONSTANT | ||
}; | ||
const dst2 = src.gaussianBlur(new cv.Size(5, 5), 1.2, optionalArgs); | ||
``` | ||
<a name="async-api"></a> | ||
## Async API | ||
The async API can be consumed by passing a callback as the last argument of the function call. By default, if an async method is called without passing a callback, the function call will yield a Promise. | ||
### Async Face Detection | ||
``` javascript | ||
const classifier = new cv.CascadeClassifier(cv.HAAR_FRONTALFACE_ALT2); | ||
// by nesting callbacks | ||
cv.imreadAsync('./faceimg.jpg', (err, img) => { | ||
if (err) { return console.error(err); } | ||
const grayImg = img.bgrToGray(); | ||
classifier.detectMultiScaleAsync(grayImg, (err, res) => { | ||
if (err) { return console.error(err); } | ||
const { objects, numDetections } = res; | ||
... | ||
}); | ||
}); | ||
// via Promise | ||
cv.imreadAsync('./faceimg.jpg') | ||
.then(img => | ||
img.bgrToGrayAsync() | ||
.then(grayImg => classifier.detectMultiScaleAsync(grayImg)) | ||
.then((res) => { | ||
const { objects, numDetections } = res; | ||
... | ||
}) | ||
) | ||
.catch(err => console.error(err)); | ||
// using async await | ||
try { | ||
const img = await cv.imreadAsync('./faceimg.jpg'); | ||
const grayImg = await img.bgrToGrayAsync(); | ||
const { objects, numDetections } = await classifier.detectMultiScaleAsync(grayImg); | ||
... | ||
} catch (err) { | ||
console.error(err); | ||
} | ||
``` | ||
<a name="with-typescript"></a> | ||
## With TypeScript | ||
@@ -394,22 +48,2 @@ | ||
Check out the TypeScript [examples](https://github.com/urielch/opencv4nodejs/tree/master/examples). | ||
<a name="external-mem-tracking"></a> | ||
## External Memory Tracking (v4.0.0) | ||
Since version 4.0.0 was released, external memory tracking has been enabled by default. Simply put, the memory allocated for Matrices (cv.Mat) will be manually reported to the node process. This solves the issue of inconsistent Garbage Collection, which could have resulted in spiking memory usage of the node process eventually leading to overflowing the RAM of your system, prior to version 4.0.0. | ||
Note, that in doubt this feature can be **disabled** by setting an environment variable `OPENCV4NODEJS_DISABLE_EXTERNAL_MEM_TRACKING` before requiring the module: | ||
``` bash | ||
export OPENCV4NODEJS_DISABLE_EXTERNAL_MEM_TRACKING=1 // linux | ||
set OPENCV4NODEJS_DISABLE_EXTERNAL_MEM_TRACKING=1 // windows | ||
``` | ||
Or directly in your code: | ||
``` javascript | ||
process.env.OPENCV4NODEJS_DISABLE_EXTERNAL_MEM_TRACKING = 1 | ||
const cv = require('opencv4nodejs-prebuilt-install') | ||
``` | ||
Check out the TypeScript [examples](https://github.com/urielch/opencv4nodejs/tree/master/examples). |
License Policy Violation
LicenseThis package is not allowed per your license policy. Review the package's license to ensure compliance.
Found 1 instance in 1 package
License Policy Violation
LicenseThis package is not allowed per your license policy. Review the package's license to ensure compliance.
Found 1 instance in 1 package
10209541
44