What
Brief
This is a standalone Priority Queue data structure from the data-structure-typed collection. If you wish to access more
data structures or advanced features, you can transition to directly installing the
complete data-structure-typed package
How
install
npm
npm i priority-queue-typed --save
yarn
yarn add priority-queue-typed
methods
Priority Queue
Min Priority Queue
Max Priority Queue
snippet
TS
import {PriorityQueue, MinPriorityQueue} from 'data-structure-typed';
const minPQ = new PriorityQueue<number>({nodes: [5, 2, 3, 4, 6, 1], comparator: (a, b) => a - b});
minPQ.toArray()
minPQ.poll();
minPQ.poll();
minPQ.poll();
minPQ.toArray()
minPQ.peek()
PriorityQueue.heapify({
nodes: [3, 2, 1, 5, 6, 7, 8, 9, 10],
comparator: (a, b) => a - b
}).toArray()
const priorityQueue = new MinPriorityQueue<number>();
priorityQueue.add(5);
priorityQueue.add(3);
priorityQueue.add(7);
priorityQueue.add(1);
const sortedArray = priorityQueue.sort();
const minPQ1 = new PriorityQueue<number>({nodes: [2, 5, 8, 3, 1, 6, 7, 4], comparator: (a, b) => a - b});
const clonedPriorityQueue = minPQ1.clone();
clonedPriorityQueue.getNodes()
clonedPriorityQueue.sort()
minPQ1.DFS('in')
minPQ1.DFS('post')
minPQ1.DFS('pre')
JS
const {PriorityQueue, MinPriorityQueue} = require('data-structure-typed');
const minPQ = new PriorityQueue({nodes: [5, 2, 3, 4, 6, 1], comparator: (a, b) => a - b});
minPQ.toArray()
minPQ.poll();
minPQ.poll();
minPQ.poll();
minPQ.toArray()
minPQ.peek()
PriorityQueue.heapify({
nodes: [3, 2, 1, 5, 6, 7, 8, 9, 10],
comparator: (a, b) => a - b
}).toArray()
const priorityQueue = new MinPriorityQueue();
priorityQueue.add(5);
priorityQueue.add(3);
priorityQueue.add(7);
priorityQueue.add(1);
const sortedArray = priorityQueue.sort();
const minPQ1 = new PriorityQueue<number>({nodes: [2, 5, 8, 3, 1, 6, 7, 4], comparator: (a, b) => a - b});
const clonedPriorityQueue = minPQ1.clone();
clonedPriorityQueue.getNodes()
clonedPriorityQueue.sort()
minPQ1.DFS('in')
minPQ1.DFS('post')
minPQ1.DFS('pre')
API docs & Examples
API Docs
Live Examples
Examples Repository
Data Structures
Why
Complexities
performance of Big O
Big O Notation | Type | Computations for 10 elements | Computations for 100 elements | Computations for 1000 elements |
---|
O(1) | Constant | 1 | 1 | 1 |
O(log N) | Logarithmic | 3 | 6 | 9 |
O(N) | Linear | 10 | 100 | 1000 |
O(N log N) | n log(n) | 30 | 600 | 9000 |
O(N^2) | Quadratic | 100 | 10000 | 1000000 |
O(2^N) | Exponential | 1024 | 1.26e+29 | 1.07e+301 |
O(N!) | Factorial | 3628800 | 9.3e+157 | 4.02e+2567 |
Data Structure Complexity
Data Structure | Access | Search | Insertion | Deletion | Comments |
---|
Array | 1 | n | n | n | |
Stack | n | n | 1 | 1 | |
Queue | n | n | 1 | 1 | |
Linked List | n | n | 1 | n | |
Hash Table | - | n | n | n | In case of perfect hash function costs would be O(1) |
Binary Search Tree | n | n | n | n | In case of balanced tree costs would be O(log(n)) |
B-Tree | log(n) | log(n) | log(n) | log(n) | |
Red-Black Tree | log(n) | log(n) | log(n) | log(n) | |
AVL Tree | log(n) | log(n) | log(n) | log(n) | |
Bloom Filter | - | 1 | 1 | - | False positives are possible while searching |
Sorting Complexity
Name | Best | Average | Worst | Memory | Stable | Comments |
---|
Bubble sort | n | n2 | n2 | 1 | Yes | |
Insertion sort | n | n2 | n2 | 1 | Yes | |
Selection sort | n2 | n2 | n2 | 1 | No | |
Heap sort | n log(n) | n log(n) | n log(n) | 1 | No | |
Merge sort | n log(n) | n log(n) | n log(n) | n | Yes | |
Quick sort | n log(n) | n log(n) | n2 | log(n) | No | Quicksort is usually done in-place with O(log(n)) stack space |
Shell sort | n log(n) | depends on gap sequence | n (log(n))2 | 1 | No | |
Counting sort | n + r | n + r | n + r | n + r | Yes | r - biggest number in array |
Radix sort | n * k | n * k | n * k | n + k | Yes | k - length of longest key |