What
Brief
This is a standalone Priority Queue data structure from the data-structure-typed collection. If you wish to access more
data structures or advanced features, you can transition to directly installing the
complete data-structure-typed package
How
install
npm
npm i priority-queue-typed --save
yarn
yarn add priority-queue-typed
methods
Priority Queue
Min Priority Queue
Max Priority Queue
snippet
TS
import {PriorityQueue, MinPriorityQueue} from 'data-structure-typed';
const minPQ = new PriorityQueue<number>({nodes: [5, 2, 3, 4, 6, 1], comparator: (a, b) => a - b});
minPQ.toArray()
minPQ.poll();
minPQ.poll();
minPQ.poll();
minPQ.toArray()
minPQ.peek()
PriorityQueue.heapify({
nodes: [3, 2, 1, 5, 6, 7, 8, 9, 10],
comparator: (a, b) => a - b
}).toArray()
const priorityQueue = new MinPriorityQueue<number>();
priorityQueue.add(5);
priorityQueue.add(3);
priorityQueue.add(7);
priorityQueue.add(1);
const sortedArray = priorityQueue.sort();
const minPQ1 = new PriorityQueue<number>({nodes: [2, 5, 8, 3, 1, 6, 7, 4], comparator: (a, b) => a - b});
const clonedPriorityQueue = minPQ1.clone();
clonedPriorityQueue.getNodes()
clonedPriorityQueue.sort()
minPQ1.DFS('in')
minPQ1.DFS('post')
minPQ1.DFS('pre')
JS
const {PriorityQueue, MinPriorityQueue} = require('data-structure-typed');
const minPQ = new PriorityQueue({nodes: [5, 2, 3, 4, 6, 1], comparator: (a, b) => a - b});
minPQ.toArray()
minPQ.poll();
minPQ.poll();
minPQ.poll();
minPQ.toArray()
minPQ.peek()
PriorityQueue.heapify({
nodes: [3, 2, 1, 5, 6, 7, 8, 9, 10],
comparator: (a, b) => a - b
}).toArray()
const priorityQueue = new MinPriorityQueue();
priorityQueue.add(5);
priorityQueue.add(3);
priorityQueue.add(7);
priorityQueue.add(1);
const sortedArray = priorityQueue.sort();
const minPQ1 = new PriorityQueue<number>({nodes: [2, 5, 8, 3, 1, 6, 7, 4], comparator: (a, b) => a - b});
const clonedPriorityQueue = minPQ1.clone();
clonedPriorityQueue.getNodes()
clonedPriorityQueue.sort()
minPQ1.DFS('in')
minPQ1.DFS('post')
minPQ1.DFS('pre')
API docs & Examples
API Docs
Live Examples
Examples Repository
Data Structures
Standard library data structure comparison
Data Structure Typed | C++ STL | java.util | Python collections |
---|
PriorityQueue<E> | priority_queue<T> | PriorityQueue<E> | - |
Benchmark
max-priority-queue
test name | time taken (ms) | executions per sec | sample deviation |
---|
10,000 refill & poll | 8.91 | 112.29 | 2.26e-4 |
priority-queue
test name | time taken (ms) | executions per sec | sample deviation |
---|
100,000 add & pop | 103.59 | 9.65 | 0.00 |
Built-in classic algorithms
Algorithm | Function Description | Iteration Type |
---|
Software Engineering Design Standards
Principle | Description |
---|
Practicality | Follows ES6 and ESNext standards, offering unified and considerate optional parameters, and simplifies method names. |
Extensibility | Adheres to OOP (Object-Oriented Programming) principles, allowing inheritance for all data structures. |
Modularization | Includes data structure modularization and independent NPM packages. |
Efficiency | All methods provide time and space complexity, comparable to native JS performance. |
Maintainability | Follows open-source community development standards, complete documentation, continuous integration, and adheres to TDD (Test-Driven Development) patterns. |
Testability | Automated and customized unit testing, performance testing, and integration testing. |
Portability | Plans for porting to Java, Python, and C++, currently achieved to 80%. |
Reusability | Fully decoupled, minimized side effects, and adheres to OOP. |
Security | Carefully designed security for member variables and methods. Read-write separation. Data structure software does not need to consider other security aspects. |
Scalability | Data structure software does not involve load issues. |