Security News
JSR Working Group Kicks Off with Ambitious Roadmap and Plans for Open Governance
At its inaugural meeting, the JSR Working Group outlined plans for an open governance model and a roadmap to enhance JavaScript package management.
regexp-tree
Advanced tools
The regexp-tree npm package is a toolkit for working with regular expressions in JavaScript. It provides functionalities for parsing, transforming, and optimizing regular expressions, making it easier to manipulate and understand complex regex patterns.
Parsing
This feature allows you to parse a regular expression into an Abstract Syntax Tree (AST). The AST can then be used for further analysis or transformation.
const { parse } = require('regexp-tree');
const ast = parse('/a(b|c)*d/');
console.log(JSON.stringify(ast, null, 2));
Transforming
This feature allows you to transform a regular expression by applying custom transformations to its AST. In this example, the character 'a' is transformed to 'z'.
const { transform } = require('regexp-tree');
const transformed = transform('/a(b|c)*d/', {
onChar(path) {
if (path.node.value === 'a') {
path.node.value = 'z';
}
}
});
console.log(transformed.getSource());
Optimizing
This feature allows you to optimize a regular expression by simplifying it. In this example, the non-capturing group '(?:b|c)' is optimized.
const { optimize } = require('regexp-tree');
const optimized = optimize('/a(?:b|c)d/');
console.log(optimized.getSource());
regexpp is a regular expression parser for ECMAScript. It provides functionalities to parse regular expressions into an AST, similar to regexp-tree. However, it does not offer transformation or optimization features.
regexp-parser is another package for parsing regular expressions into an AST. It is simpler and more lightweight compared to regexp-tree, but it lacks the transformation and optimization capabilities.
regexgen generates regular expressions from a set of strings. While it does not parse or transform existing regex patterns, it focuses on creating new regex patterns that match a given set of strings, which is a different use case compared to regexp-tree.
Regular expressions processor in JavaScript
TL;DR: RegExp Tree is a regular expressions processor, which includes parser, traversal, transformer, optimizer, and interpreter APIs.
You can get an overview of the tool in this article.
The parser can be installed as an npm module:
npm install -g regexp-tree
regexp-tree --help
You can also try it online using AST Explorer.
npm test
still passes (add new tests if needed)The regexp-tree parser is implemented as an automatic LR parser using Syntax tool. The parser module is generated from the regexp grammar, which is based on the regular expressions grammar used in ECMAScript.
For development from the github repository, run build
command to generate the parser module, and transpile JS code:
git clone https://github.com/<your-github-account>/regexp-tree.git
cd regexp-tree
npm install
npm run build
./bin/regexp-tree --help
NOTE: JS code transpilation is used to support older versions of Node. For faster development cycle you can use
npm run watch
command, which continuously transpiles JS code.
Check the options available from CLI:
regexp-tree --help
Usage: regexp-tree [options]
Options:
-e, --expression A regular expression to be parsed
-l, --loc Whether to capture AST node locations
-o, --optimize Applies optimizer on the passed expression
-c, --compat Applies compat-transpiler on the passed expression
-t, --table Print NFA/DFA transition tables (nfa/dfa/all)
To parse a regular expression, pass -e
option:
regexp-tree -e '/a|b/i'
Which produces an AST node corresponding to this regular expression:
{
type: 'RegExp',
body: {
type: 'Disjunction',
left: {
type: 'Char',
value: 'a',
symbol: 'a',
kind: 'simple',
codePoint: 97
},
right: {
type: 'Char',
value: 'b',
symbol: 'b',
kind: 'simple',
codePoint: 98
}
},
flags: 'i',
}
NOTE: the format of a regexp is
/ Body / OptionalFlags
.
The parser can also be used as a Node module:
const regexpTree = require('regexp-tree');
console.log(regexpTree.parse(/a|b/i)); // RegExp AST
Note, regexp-tree supports parsing regexes from strings, and also from actual RegExp
objects (in general -- from any object which can be coerced to a string). If some feature is not implemented yet in an actual JavaScript RegExp, it should be passed as a string:
// Pass an actual JS RegExp object.
regexpTree.parse(/a|b/i);
// Pass a string, since `s` flag may not be supported in older versions.
regexpTree.parse('/./s');
Also note, that in string-mode, escaping is done using two slashes \\
per JavaScript:
// As an actual regexp.
regexpTree.parse(/\n/);
// As a string.
regexpTree.parse('/\\n/');
For source code transformation tools it might be useful also to capture locations of the AST nodes. From the command line it's controlled via the -l
option:
regexp-tree -e '/ab/' -l
This attaches loc
object to each AST node:
{
type: 'RegExp',
body: {
type: 'Alternative',
expressions: [
{
type: 'Char',
value: 'a',
symbol: 'a',
kind: 'simple',
codePoint: 97,
loc: {
start: {
line: 1,
column: 1,
offset: 1,
},
end: {
line: 1,
column: 2,
offset: 2,
},
}
},
{
type: 'Char',
value: 'b',
symbol: 'b',
kind: 'simple',
codePoint: 98,
loc: {
start: {
line: 1,
column: 2,
offset: 2,
},
end: {
line: 1,
column: 3,
offset: 3,
},
}
}
],
loc: {
start: {
line: 1,
column: 1,
offset: 1,
},
end: {
line: 1,
column: 3,
offset: 3,
},
}
},
flags: '',
loc: {
start: {
line: 1,
column: 0,
offset: 0,
},
end: {
line: 1,
column: 4,
offset: 4,
},
}
}
From Node it's controlled via setOptions
method exposed on the parser:
const regexpTree = require('regexp-tree');
const parsed = regexpTree
.parser
.setOptions({captureLocations: true})
.parse(/a|b/);
The setOptions
method sets global options, which are preserved between calls. It is also possible to provide options per a single parse
call, which might be more preferred:
const regexpTree = require('regexp-tree');
const parsed = regexpTree.parse(/a|b/, {
captureLocations: true,
});
The traverse module allows handling needed AST nodes using the visitor pattern. In Node the module is exposed as the regexpTree.traverse
method. Handlers receive an instance of the NodePath class, which encapsulates node
itself, its parent
node, property
, and index
(in case the node is part of a collection).
Visiting a node follows this algorithm:
pre
handler.post
handler.For each node type of interest, you can provide either:
pre
).pre
and post
.You can also provide a *
handler which will be executed on every node.
Example:
const regexpTree = require('regexp-tree');
// Get AST.
const ast = regexpTree.parse('/[a-z]{1,}/');
// Traverse AST nodes.
regexpTree.traverse(ast, {
// Visit every node before any type-specific handlers.
'*': function({node}) {
...
},
// Handle "Quantifier" node type.
Quantifier({node}) {
...
},
// Handle "Char" node type, before and after.
Char: {
pre({node}) {
...
},
post({node}) {
...
}
}
});
// Generate the regexp.
const re = regexpTree.generate(ast);
console.log(re); // '/[a-z]+/'
NOTE: you can play with transformation APIs, and write actual transforms for quick tests in AST Explorer. See this example.
While traverse module provides basic traversal API, which can be used for any purposes of AST handling, transform module focuses mainly on transformation of regular expressions.
It accepts a regular expressions in different formats (string, an actual RegExp
object, or an AST), applies a set of transformations, and retuns an instance of TransformResult. Handles receive as a parameter the same NodePath object used in traverse.
Example:
const regexpTree = require('regexp-tree');
// Handle nodes.
const re = regexpTree.transform('/[a-z]{1,}/i', {
/**
* Handle "Quantifier" node type,
* transforming `{1,}` quantifier to `+`.
*/
Quantifier(path) {
const {node} = path;
// {1,} -> +
if (
node.type === 'Range' &&
node.from === 1 &&
!node.to
) {
path.replace({
type: 'Quantifier',
kind: '+',
greedy: node.greedy,
});
}
},
});
console.log(re.toString()); // '/[a-z]+/i'
console.log(re.toRegExp()); // /[a-z]+/i
console.log(re.getAST()); // AST for /[a-z]+/i
A transformation plugin is a module which exports a transformation handler. We have seen above how we can pass a handler object directly to the regexpTree.transform
method, here we extract it into a separate module, so it can be implemented and shared independently:
Example of a plugin:
// file: ./regexp-tree-a-to-b-transform.js
/**
* This plugin replaces chars 'a' with chars 'b'.
*/
module.exports = {
Char({node}) {
if (node.kind === 'simple' && node.value === 'a') {
node.value = 'b';
node.symbol = 'b';
node.codePoint = 98;
}
},
};
Once we have this plugin ready, we can require it, and pass to the transform
function:
const regexpTree = require('regexp-tree');
const plugin = require('./regexp-tree-a-to-b-transform');
const re = regexpTree.transform(/(a|c)a+[a-z]/, plugin);
console.log(re.toRegExp()); // /(b|c)b+[b-z]/
NOTE: we can also pass a list of plugins to the
regexpTree.transform
. In this case the plugins are applied in one pass in order. Another approach is to run several sequential calls totransform
, setting up a pipeline, when a transformed AST is passed further to another plugin, etc.
You can see other examples of transform plugins in the optimizer/transforms or in the compat-transpiler/transforms directories.
The generator module generates regular expressions from corresponding AST nodes. In Node the module is exposed as regexpTree.generate
method.
Example:
const regexpTree = require('regexp-tree');
const re = regexpTree.generate({
type: 'RegExp',
body: {
type: 'Char',
value: 'a',
symbol: 'a',
kind: 'simple',
codePoint: 97
},
flags: 'i',
});
console.log(re); // '/a/i'
Optimizer transforms your regexp into an optimized version, replacing some sub-expressions with their idiomatic patterns. This might be good for different kinds of minifiers, as well as for regexp machines.
NOTE: the Optimizer is implemented as a set of regexp-tree plugins.
Example:
const regexpTree = require('regexp-tree');
const originalRe = /[a-zA-Z_0-9][A-Z_\da-z]*\e{1,}/;
const optimizedRe = regexpTree
.optimize(originalRe)
.toRegExp();
console.log(optimizedRe); // /\w+e+/
From CLI the optimizer is available via --optimize
(-o
) option:
regexp-tree -e '/[a-zA-Z_0-9][A-Z_\da-z]*\e{1,}/' -o
Result:
Optimized: /\w+e+/
The optimizer module is also available as an ESLint plugin, which can be installed at: eslint-plugin-optimize-regex.
The compat-transpiler module translates your regexp in new format or in new syntax, into an equivalent regexp in a legacy representation, so it can be used in engines which don't yet implement the new syntax.
NOTE: the compat-transpiler is implemented as a set of regexp-tree plugins.
Example, "dotAll" s
flag:
/./s
Is translated into:
/[\0-\uFFFF]/
/(?<value>a)\k<value>\1/
Becomes:
/(a)\1\1/
To use the API from Node:
const regexpTree = require('regexp-tree');
// Using new syntax.
const originalRe = '/(?<all>.)\\k<all>/s';
// For legacy engines.
const compatTranspiledRe = regexpTree
.compatTranspile(originalRe)
.toRegExp();
console.log(compatTranspiledRe); // /([\0-\uFFFF])\1/
From CLI the compat-transpiler is available via --compat
(-c
) option:
regexp-tree -e '/(?<all>.)\k<all>/s' -c
Result:
Compat: /([\0-\uFFFF])\1/
The compat-transpiler module is also available as a Babel plugin, which can be installed at: babel-plugin-transform-modern-regexp.
Note, the plugin also includes extended regexp features.
Besides future proposals, like named capturing group, and other which are being currently standardized, regexp-tree also supports non-standard features.
NOTE: "non-standard" means specifically ECMAScript standard, since in other regexp egnines, e.g. PCRE, Python, etc. these features are standard.
One of such featurs is x
flag, which enables extended mode of regular expressions. In this mode most of whitespaces are ignored, and expressions can use #-comments.
Example:
/
# A regular expression for date.
(?<year>\d{4})- # year part of a date
(?<month>\d{2})- # month part of a date
(?<day>\d{2}) # day part of a date
/x
This is normally parsed by the regexp-tree parser, and compat-transpiler has full support for it; it's translated into:
/(\d{4})-(\d{2})-(\d{2})/
The regexp extensions are also available as a Babel plugin, which can be installed at: babel-plugin-transform-modern-regexp.
Note, the plugin also includes compat-transpiler features.
To create an actual RegExp
JavaScript object, we can use regexpTree.toRegExp
method:
const regexpTree = require('regexp-tree');
const re = regexpTree.toRegExp('/[a-z]/i');
console.log(
re.test('a'), // true
re.test('Z'), // true
);
It is also possible to execute regular expressions using exec
API method, which has support for new syntax, and features, such as named capturing group, etc:
const regexpTree = require('regexp-tree');
const re = `/
# A regular expression for date.
(?<year>\\d{4})- # year part of a date
(?<month>\\d{2})- # month part of a date
(?<day>\\d{2}) # day part of a date
/x`;
const string = '2017-04-14';
const result = regexpTree.exec(re, string);
console.log(result.groups); // {year: '2017', month: '04', day: '14'}
NOTE: you can read more about implementation details of the interpreter in this series of articles.
In addition to executing regular expressions using JavaScript built-in RegExp engine, RegExp Tree also implements own interpreter based on classic NFA/DFA finite automaton engine.
Currently it aims educational purposes -- to trace the regexp matching process, transitioning in NFA/DFA states. It also allows building state transitioning table, which can be used for custom implementation. In API the module is exposed as fa
(finite-automaton) object.
Example:
const {fa} = require('regexp-tree');
const re = /ab|c*/;
console.log(fa.test(re, 'ab')); // true
console.log(fa.test(re, '')); // true
console.log(fa.test(re, 'c')); // true
// NFA, and its transition table.
const nfa = fa.toNFA(re);
console.log(nfa.getTransitionTable());
// DFA, and its transition table.
const dfa = fa.toDFA(re);
console.log(dfa.getTransitionTable());
For more granular work with NFA and DFA, fa
module also exposes convenient builders, so you can build NFA fragments directly:
const {fa} = require('regexp-tree');
const {
alt,
char,
or,
rep,
} = fa.builders;
// ab|c*
const re = or(
alt(char('a'), char('b')),
rep(char('c'))
);
console.log(re.matches('ab')); // true
console.log(re.matches('')); // true
console.log(re.matches('c')); // true
// Build DFA from NFA
const {DFA} = fa;
const reDFA = new DFA(re);
console.log(reDFA.matches('ab')); // true
console.log(reDFA.matches('')); // true
console.log(reDFA.matches('c')); // true
The --table
option allows displaying NFA/DFA transition tables. RegExp Tree also applies DFA minimization (using N-equivalence algorithm), and produces the minimal transition table as its final result.
In the example below for the /a|b|c/
regexp, we first obtain the NFA transition table, which is further converted to the original DFA transition table (down from the 10 non-deterministic states to 4 deterministic states), and eventually minimized to the final DFA table (from 4 to only 2 states).
./bin/regexp-tree -e '/a|b|c/' --table all
Result:
> - starting
✓ - accepting
NFA transition table:
┌─────┬───┬───┬────┬─────────────┐
│ │ a │ b │ c │ ε* │
├─────┼───┼───┼────┼─────────────┤
│ 1 > │ │ │ │ {1,2,3,7,9} │
├─────┼───┼───┼────┼─────────────┤
│ 2 │ │ │ │ {2,3,7} │
├─────┼───┼───┼────┼─────────────┤
│ 3 │ 4 │ │ │ 3 │
├─────┼───┼───┼────┼─────────────┤
│ 4 │ │ │ │ {4,5,6} │
├─────┼───┼───┼────┼─────────────┤
│ 5 │ │ │ │ {5,6} │
├─────┼───┼───┼────┼─────────────┤
│ 6 ✓ │ │ │ │ 6 │
├─────┼───┼───┼────┼─────────────┤
│ 7 │ │ 8 │ │ 7 │
├─────┼───┼───┼────┼─────────────┤
│ 8 │ │ │ │ {8,5,6} │
├─────┼───┼───┼────┼─────────────┤
│ 9 │ │ │ 10 │ 9 │
├─────┼───┼───┼────┼─────────────┤
│ 10 │ │ │ │ {10,6} │
└─────┴───┴───┴────┴─────────────┘
DFA: Original transition table:
┌─────┬───┬───┬───┐
│ │ a │ b │ c │
├─────┼───┼───┼───┤
│ 1 > │ 4 │ 3 │ 2 │
├─────┼───┼───┼───┤
│ 2 ✓ │ │ │ │
├─────┼───┼───┼───┤
│ 3 ✓ │ │ │ │
├─────┼───┼───┼───┤
│ 4 ✓ │ │ │ │
└─────┴───┴───┴───┘
DFA: Minimized transition table:
┌─────┬───┬───┬───┐
│ │ a │ b │ c │
├─────┼───┼───┼───┤
│ 1 > │ 2 │ 2 │ 2 │
├─────┼───┼───┼───┤
│ 2 ✓ │ │ │ │
└─────┴───┴───┴───┘
Below are the AST node types for different regular expressions patterns:
A basic building block, single character. Can be escaped, and be of different kinds.
Basic non-escaped char in a regexp:
z
Node:
{
type: 'Char',
value: 'z',
symbol: 'z',
kind: 'simple',
codePoint: 122
}
NOTE: to test this from CLI, the char should be in an actual regexp --
/z/
.
\z
The same value, escaped
flag is added:
{
type: 'Char',
value: 'z',
symbol: 'z',
kind: 'simple',
codePoint: 122,
escaped: true
}
Escaping is mostly used with meta symbols:
// Syntax error
*
\*
OK, node:
{
type: 'Char',
value: '*',
symbol: '*',
kind: 'simple',
codePoint: 42,
escaped: true
}
A meta character should not be confused with an escaped char.
Example:
\n
Node:
{
type: 'Char',
value: '\\n',
symbol: '\n',
kind: 'meta',
codePoint: 10
}
Among other meta character are: .
, \f
, \r
, \n
, \t
, \v
, \0
, [\b]
(backspace char), \s
, \S
, \w
, \W
, \d
, \D
.
NOTE: Meta characters representing ranges (like
.
,\s
, etc.) haveundefined
value forsymbol
andNaN
forcodePoint
.
NOTE:
\b
and\B
are parsed asAssertion
node type, notChar
.
A char preceded with \c
, e.g. \cx
, which stands for CTRL+x
:
\cx
Node:
{
type: 'Char',
value: '\\cx',
symbol: undefined,
kind: 'control',
codePoint: NaN
}
A char preceded with \x
, followed by a HEX-code, e.g. \x3B
(symbol ;
):
\x3B
Node:
{
type: 'Char',
value: '\\x3B',
symbol: ';',
kind: 'hex',
codePoint: 59
}
Char-code:
\42
Node:
{
type: 'Char',
value: '\\42',
symbol: '*',
kind: 'decimal',
codePoint: 42
}
Char-code started with \0
, followed by an octal number:
\073
Node:
{
type: 'Char',
value: '\\073',
symbol: ';',
kind: 'oct',
codePoint: 59
}
Unicode char started with \u
, followed by a hex number:
\u003B
Node:
{
type: 'Char',
value: '\\u003B',
symbol: ';',
kind: 'unicode',
codePoint: 59
}
When using the u
flag, unicode chars can also be represented using \u
followed by a hex number between curly braces:
\u{1F680}
Node:
{
type: 'Char',
value: '\\u{1F680}',
symbol: '🚀',
kind: 'unicode',
codePoint: 128640
}
When using the u
flag, unicode chars can also be represented using a surrogate pair:
\ud83d\ude80
Node:
{
type: 'Char',
value: '\\ud83d\\ude80',
symbol: '🚀',
kind: 'unicode',
codePoint: 128640,
isSurrogatePair: true
}
Character classes define a set of characters. A set may include as simple characters, as well as character ranges. A class can be positive (any from the characters in the class match), or negative (any but the characters from the class match).
A positive character class is defined between [
and ]
brackets:
[a*]
A node:
{
type: 'CharacterClass',
expressions: [
{
type: 'Char',
value: 'a',
symbol: 'a',
kind: 'simple',
codePoint: 97
},
{
type: 'Char',
value: '*',
symbol: '*',
kind: 'simple',
codePoint: 42
}
]
}
NOTE: some meta symbols are treated as normal characters in a character class. E.g.
*
is not a repetition quantifier, but a simple char.
A negative character class is defined between [^
and ]
brackets:
[^ab]
An AST node is the same, just negative
property is added:
{
type: 'CharacterClass',
negative: true,
expressions: [
{
type: 'Char',
value: 'a',
symbol: 'a',
kind: 'simple',
codePoint: 97
},
{
type: 'Char',
value: 'b',
symbol: 'b',
kind: 'simple',
codePoint: 98
}
]
}
As mentioned, a character class may also contain ranges of symbols:
[a-z]
A node:
{
type: 'CharacterClass',
expressions: [
{
type: 'ClassRange',
from: {
type: 'Char',
value: 'a',
symbol: 'a',
kind: 'simple',
codePoint: 97
},
to: {
type: 'Char',
value: 'z',
symbol: 'z',
kind: 'simple',
codePoint: 122
}
}
]
}
NOTE: it is a syntax error if
to
value is less thanfrom
value:/[z-a]/
.
The range value can be the same for from
and to
, and the special range -
character is treated as a simple character when it stands in a char position:
// from: 'a', to: 'a'
[a-a]
// from: '-', to: '-'
[---]
// simple '-' char:
[-]
// 3 ranges:
[a-zA-Z0-9]+
An alternative (or concatenation) defines a chain of patterns followed one after another:
abc
A node:
{
type: 'Alternative',
expressions: [
{
type: 'Char',
value: 'a',
symbol: 'a',
kind: 'simple',
codePoint: 97
},
{
type: 'Char',
value: 'b',
symbol: 'b',
kind: 'simple',
codePoint: 98
},
{
type: 'Char',
value: 'c',
symbol: 'c',
kind: 'simple',
codePoint: 99
}
]
}
Another examples:
// 'a' with a quantifier, followed by 'b'
a?b
// A group followed by a class:
(ab)[a-z]
The disjunction defines "OR" operation for regexp patterns. It's a binary operation, having left
, and right
nodes.
Matches a
or b
:
a|b
A node:
{
type: 'Disjunction',
left: {
type: 'Char',
value: 'a',
symbol: 'a',
kind: 'simple',
codePoint: 97
},
right: {
type: 'Char',
value: 'b',
symbol: 'b',
kind: 'simple',
codePoint: 98
}
}
The groups play two roles: they define grouping precedence, and allow to capture needed sub-expressions in case of a capturing group.
"Capturing" means the matched string can be referred later by a user, including in the pattern itself -- by using backreferences.
Char a
, and b
are grouped, followed by the c
char:
(ab)c
A node:
{
type: 'Alternative',
expressions: [
{
type: 'Group',
capturing: true,
number: 1,
expression: {
type: 'Alternative',
expressions: [
{
type: 'Char',
value: 'a',
symbol: 'a',
kind: 'simple',
codePoint: 97
},
{
type: 'Char',
value: 'b',
symbol: 'b',
kind: 'simple',
codePoint: 98
}
]
}
},
{
type: 'Char',
value: 'c',
symbol: 'c',
kind: 'simple',
codePoint: 99
}
]
}
As we can see, it also tracks the number of the group.
Another example:
// A grouped disjunction of a symbol, and a character class:
(5|[a-z])
NOTE: Named capturing groups are not yet supported by JavaScript RegExp. It is an ECMAScript proposal which is at stage 3 at the moment.
A capturing group can be given a name using the (?<name>...)
syntax, for any identifier name
.
For example, a regular expressions for a date:
/(?<year>\d{4})-(?<month>\d{2})-(?<day>\d{2})/u
For the group:
(?<foo>x)
We have the following node (the name
property with value foo
is added):
{
type: 'Group',
capturing: true,
name: 'foo',
number: 1,
expression: {
type: 'Char',
value: 'x',
symbol: 'x',
kind: 'simple',
codePoint: 120
}
}
Sometimes we don't need to actually capture the matched string from a group. In this case we can use a non-capturing group:
Char a
, and b
are grouped, but not captured, followed by the c
char:
(?:ab)c
The same node, the capturing
flag is false
:
{
type: 'Alternative',
expressions: [
{
type: 'Group',
capturing: false,
expression: {
type: 'Alternative',
expressions: [
{
type: 'Char',
value: 'a',
symbol: 'a',
kind: 'simple',
codePoint: 97
},
{
type: 'Char',
value: 'b',
symbol: 'b',
kind: 'simple',
codePoint: 98
}
]
}
},
{
type: 'Char',
value: 'c',
symbol: 'c',
kind: 'simple',
codePoint: 99
}
]
}
A capturing group can be referenced in the pattern using notation of an escaped group number.
Matches abab
string:
(ab)\1
A node:
{
type: 'Alternative',
expressions: [
{
type: 'Group',
capturing: true,
number: 1,
expression: {
type: 'Alternative',
expressions: [
{
type: 'Char',
value: 'a',
symbol: 'a',
kind: 'simple',
codePoint: 97
},
{
type: 'Char',
value: 'b',
symbol: 'b',
kind: 'simple',
codePoint: 98
}
]
}
},
{
type: 'Backreference',
kind: 'number',
number: 1,
reference: 1,
}
]
}
A named capturing group can be accessed using \k<name>
pattern, and also using a numbered reference.
Matches www
:
(?<foo>w)\k<foo>\1
A node:
{
type: 'Alternative',
expressions: [
{
type: 'Group',
capturing: true,
name: 'foo',
number: 1,
expression: {
type: 'Char',
value: 'w',
symbol: 'w',
kind: 'simple',
codePoint: 119
}
},
{
type: 'Backreference',
kind: 'name',
number: 1,
reference: 'foo'
},
{
type: 'Backreference',
kind: 'number',
number: 1,
reference: 1
}
]
}
Quantifiers specify repetition of a regular expression (or of its part). Below are the quantifiers which wrap a parsed expression into a Repetition
node. The quantifier itself can be of different kinds, and has Quantifier
node type.
The ?
quantifier is short for {0,1}
.
a?
Node:
{
type: 'Repetition',
expression: {
type: 'Char',
value: 'a',
symbol: 'a',
kind: 'simple',
codePoint: 97
},
quantifier: {
type: 'Quantifier',
kind: '?',
greedy: true
}
}
The *
quantifier is short for {0,}
.
a*
Node:
{
type: 'Repetition',
expression: {
type: 'Char',
value: 'a',
symbol: 'a',
kind: 'simple',
codePoint: 97
},
quantifier: {
type: 'Quantifier',
kind: '*',
greedy: true
}
}
The +
quantifier is short for {1,}
.
// Same as `aa*`, or `a{1,}`
a+
Node:
{
type: 'Repetition',
expression: {
type: 'Char',
value: 'a',
symbol: 'a',
kind: 'simple',
codePoint: 97
},
quantifier: {
type: 'Quantifier',
kind: '+',
greedy: true
}
}
Explicit range-based quantifiers are parsed as follows:
a{3}
The type of the quantifier is Range
, and from
, and to
properties have the same value:
{
type: 'Repetition',
expression: {
type: 'Char',
value: 'a',
symbol: 'a',
kind: 'simple',
codePoint: 97
},
quantifier: {
type: 'Quantifier',
kind: 'Range',
from: 3,
to: 3,
greedy: true
}
}
An open range doesn't have max value (assuming semantic "more", or Infinity value):
a{3,}
An AST node for such range doesn't contain to
property:
{
type: 'Repetition',
expression: {
type: 'Char',
value: 'a',
symbol: 'a',
kind: 'simple',
codePoint: 97
},
quantifier: {
type: 'Quantifier',
kind: 'Range',
from: 3,
greedy: true
}
}
A closed range has explicit max value: (which syntactically can be the same as min value):
a{3,5}
// Same as a{3}
a{3,3}
An AST node for a closed range:
{
type: 'Repetition',
expression: {
type: 'Char',
value: 'a',
symbol: 'a',
kind: 'simple',
codePoint: 97
},
quantifier: {
type: 'Quantifier',
kind: 'Range',
from: 3,
to: 5,
greedy: true
}
}
NOTE: it is a syntax error if the max value is less than min value:
/a{3,2}/
If any quantifier is followed by the ?
, the quantifier becomes non-greedy.
Example:
a+?
Node:
{
type: 'Repetition',
expression: {
type: 'Char',
value: 'a',
symbol: 'a',
kind: 'simple',
codePoint: 97
},
quantifier: {
type: 'Quantifier',
kind: '+',
greedy: false
}
}
Other examples:
a??
a*?
a{1}?
a{1,}?
a{1,3}?
Assertions appear as separate AST nodes, however instread of manipulating on the characters themselves, they assert certain conditions of a matching string. Examples: ^
-- beginning of a string (or a line in multiline mode), $
-- end of a string, etc.
The ^
assertion checks whether a scanner is at the beginning of a string (or a line in multiline mode).
In the example below ^
is not a property of the a
symbol, but a separate AST node for the assertion. The parsed node is actually an Alternative
with two nodes:
^a
The node:
{
type: 'Alternative',
expressions: [
{
type: 'Assertion',
kind: '^'
},
{
type: 'Char',
value: 'a',
symbol: 'a',
kind: 'simple',
codePoint: 97
}
]
}
Since assertion is a separate node, it may appear anywhere in the matching string. The following regexp is completely valid, and asserts beginning of the string; it'll match an empty string:
^^^^^
The $
assertion is similar to ^
, but asserts the end of a string (or a line in a multiline mode):
a$
A node:
{
type: 'Alternative',
expressions: [
{
type: 'Char',
value: 'a',
symbol: 'a',
kind: 'simple',
codePoint: 97
},
{
type: 'Assertion',
kind: '$'
}
]
}
And again, this is a completely valid regexp, and matches an empty string:
^^^^$$$$$
// valid too:
$^
The \b
assertion check for word boundary, i.e. the position between a word and a space.
Matches x
in x y
, but not in xy
:
x\b
A node:
{
type: 'Alternative',
expressions: [
{
type: 'Char',
value: 'x',
symbol: 'x',
kind: 'simple',
codePoint: 120
},
{
type: 'Assertion',
kind: '\\b'
}
]
}
The \B
is vice-versa checks for non-word boundary. The following example matches x
in xy
, but not in x y
:
x\B
A node is the same:
{
type: 'Alternative',
expressions: [
{
type: 'Char',
value: 'x',
symbol: 'x',
kind: 'simple',
codePoint: 120
},
{
type: 'Assertion',
kind: '\\B'
}
]
}
These assertions check whether a pattern is followed (or not followed for the negative assertion) by another pattern.
Matches a
only if it's followed by b
:
a(?=b)
A node:
{
type: 'Alternative',
expressions: [
{
type: 'Char',
value: 'a',
symbol: 'a',
kind: 'simple',
codePoint: 97
},
{
type: 'Assertion',
kind: 'Lookahead',
assertion: {
type: 'Char',
value: 'b',
symbol: 'b',
kind: 'simple',
codePoint: 98
}
}
]
}
Matches a
only if it's not followed by b
:
a(?!b)
A node is similar, just negative
flag is added:
{
type: 'Alternative',
expressions: [
{
type: 'Char',
value: 'a',
symbol: 'a',
kind: 'simple',
codePoint: 97
},
{
type: 'Assertion',
kind: 'Lookahead',
negative: true,
assertion: {
type: 'Char',
value: 'b',
symbol: 'b',
kind: 'simple',
codePoint: 98
}
}
]
}
NOTE: Lookbehind assertions are not yet supported by JavaScript RegExp. It is an ECMAScript proposal which is at stage 3 at the moment.
These assertions check whether a pattern is preceded (or not preceded for the negative assertion) by another pattern.
Matches b
only if it's preceded by a
:
(?<=a)b
A node:
{
type: 'Alternative',
expressions: [
{
type: 'Assertion',
kind: 'Lookbehind',
assertion: {
type: 'Char',
value: 'a',
symbol: 'a',
kind: 'simple',
codePoint: 97
}
},
{
type: 'Char',
value: 'b',
symbol: 'b',
kind: 'simple',
codePoint: 98
},
]
}
Matches b
only if it's not preceded by a
:
(?<!a)b
A node:
{
type: 'Alternative',
expressions: [
{
type: 'Assertion',
kind: 'Lookbehind',
negative: true,
assertion: {
type: 'Char',
value: 'a',
symbol: 'a',
kind: 'simple',
codePoint: 97
}
},
{
type: 'Char',
value: 'b',
symbol: 'b',
kind: 'simple',
codePoint: 98
},
]
}
FAQs
Regular Expressions parser in JavaScript
The npm package regexp-tree receives a total of 4,135,738 weekly downloads. As such, regexp-tree popularity was classified as popular.
We found that regexp-tree demonstrated a not healthy version release cadence and project activity because the last version was released a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
At its inaugural meeting, the JSR Working Group outlined plans for an open governance model and a roadmap to enhance JavaScript package management.
Security News
Research
An advanced npm supply chain attack is leveraging Ethereum smart contracts for decentralized, persistent malware control, evading traditional defenses.
Security News
Research
Attackers are impersonating Sindre Sorhus on npm with a fake 'chalk-node' package containing a malicious backdoor to compromise developers' projects.