Security News
JSR Working Group Kicks Off with Ambitious Roadmap and Plans for Open Governance
At its inaugural meeting, the JSR Working Group outlined plans for an open governance model and a roadmap to enhance JavaScript package management.
The 'rx' npm package is a library for composing asynchronous and event-based programs using observable sequences. It provides powerful utilities for creating, transforming, and querying data streams.
Creating Observables
This code demonstrates how to create an Observable that emits a single value, 'Hello', and then completes.
const { Observable } = require('rx');
const observable = Observable.create(observer => {
observer.onNext('Hello');
observer.onCompleted();
});
observable.subscribe(value => console.log(value));
Transforming Data
This code shows how to transform data in an Observable sequence using the 'map' operator, multiplying each number by 10.
const { Observable } = require('rx');
const source = Observable.from([1, 2, 3]);
const multiplied = source.map(value => value * 10);
multiplied.subscribe(value => console.log(value));
Combining Observables
This code snippet illustrates how to combine two Observables into one using 'combineLatest', which emits values from both Observables as an array.
const { Observable } = require('rx');
const obs1 = Observable.of('Hello');
const obs2 = Observable.of('World');
const combined = Observable.combineLatest(obs1, obs2, (v1, v2) => v1 + ' ' + v2);
combined.subscribe(value => console.log(value));
Error Handling
This example demonstrates how to handle errors in an Observable sequence using the 'throw' operator and the error handling function in 'subscribe'.
const { Observable } = require('rx');
const source = Observable.throw(new Error('Oops!'));
source.subscribe(
value => console.log(value),
error => console.error(error.message)
);
Filtering Data
This code sample shows how to filter data in an Observable sequence using the 'filter' operator, emitting only even numbers.
const { Observable } = require('rx');
const source = Observable.from([1, 2, 3, 4, 5]);
const filtered = source.filter(value => value % 2 === 0);
filtered.subscribe(value => console.log(value));
RxJS is a reactive programming library for JavaScript. It offers a more modern API and is more actively maintained compared to 'rx'. It is the standard choice for use with frameworks like Angular.
Most.js is another reactive programming library that focuses on high performance and low memory usage. It claims to be one of the fastest reactive streaming libraries.
Bacon.js provides functional reactive programming and streams. It has a different API design and is known for its ease of use and integration with other libraries and frameworks.
Kefir.js is a Reactive Programming library with focus on high performance and low memory usage. It is similar to Bacon.js but with a smaller API surface and less overhead.
The Need to go Reactive | About the Reactive Extensions | Batteries Included | Why RxJS? | Dive In! | Resources | Getting Started | What about my libraries? | Compatibility | Contributing | License
...is a set of libraries to compose asynchronous and event-based programs using observable collections and Array#extras style composition in JavaScript
The project is actively developed by Microsoft Open Technologies, Inc., in collaboration with a community of open source developers.
Applications, especially on the web have changed over the years from being a simple static page, to DHTML with animations, to the Ajax revolution. Each time, we're adding more complexity, more data, and asynchronous behavior to our applications. How do we manage it all? How do we scale it? By moving towards "Reactive Architectures" which are event-driven, resilient and responsive. With the Reactive Extensions, you have all the tools you need to help build these systems.
The Reactive Extensions for JavaScript (RxJS) is a set of libraries for composing asynchronous and event-based programs using observable sequences and fluent query operators that many of you already know by Array#extras in JavaScript. Using RxJS, developers represent asynchronous data streams with Observables, query asynchronous data streams using our many operators, and parameterize the concurrency in the asynchronous data streams using Schedulers. Simply put, RxJS = Observables + Operators + Schedulers.
Whether you are authoring a web-based application in JavaScript or a server-side application in Node.js, you have to deal with asynchronous and event-based programming as a matter of course. Although some patterns are emerging such as the Promise pattern, handling exceptions, cancellation, and synchronization is difficult and error-prone.
Using RxJS, you can represent multiple asynchronous data streams (that come from diverse sources, e.g., stock quote, tweets, computer events, web service requests, etc.), and subscribe to the event stream using the Observer object. The Observable notifies the subscribed Observer instance whenever an event occurs.
Because observable sequences are data streams, you can query them using standard query operators implemented by the Observable type. Thus you can filter, project, aggregate, compose and perform time-based operations on multiple events easily by using these operators. In addition, there are a number of other reactive stream specific operators that allow powerful queries to be written. Cancellation, exceptions, and synchronization are also handled gracefully by using the methods on the Observable object.
But the best news of all is that you already know how to program like this. Take for example the following JavaScript code, where we get some stock data and then manipulate and then iterate the results.
/* Get stock data somehow */
var source = getStockData();
source
.filter(function (quote) {
return quote.price > 30;
})
.map(function (quote) {
return quote.price;
})
.forEach(function (price) {
console.log('Prices higher than $30: $' + price);
});
Now what if this data were to come as some sort of event, for example a stream, such as as a WebSocket, then we could pretty much write the same query to iterate our data, with very little change.
/* Get stock data somehow */
var source = getAsyncStockData();
var subscription = source
.filter(function (quote) {
return quote.price > 30;
})
.map(function (quote) {
return quote.price;
})
.forEach(
function (price) {
console.log('Prices higher than $30: $' + price);
},
function (err) {
console.log('Something went wrong: ' + err.message);
});
/* When we're done */
subscription.dispose();
The only difference is that we can handle the errors inline with our subscription. And when we're no longer interested in receiving the data as it comes streaming in, we call dispose
on our subscription.
Sure, there are a lot of libraries to get started with RxJS. Confused on where to get started? Start out with the complete set of operators with rx.all.js
, then you can reduce it to the number of operators that you really need, and perhaps stick with something as small as rx.lite.js
.
This set of libraries include:
rx.all.js
- complete version of RxJS with all operators, minus the testing operators, and comes with a compat file for older browsers.rx.lite.js
- lite version with event bindings, creation, time and standard query operators with a compat file for older browsers. For most operations, this is the file you'll want to use unless you want the full power of RxJS.rx.lite.extras.js
- the operators missing from rx.lite.js that can be found in rx.js.rx.js
- core library for ES5 compliant browsers and runtimes plus compatibility for older browsers.rx.aggregates.js
- aggregation event processing query operationsrx.async.js
- async operations such as events, callbacks and promises plus a compat file for older browsers.rx.backpressure.js
- backpressure operators such as pause/resume and controlled.rx.binding.js
- binding operators including multicast, publish, publishLast, publishValue, and replayrx.coincidence.js
- reactive coincidence join event processing query operationsrx.experimental.js
- experimental operators including imperative operators and forkJoinrx.joinpatterns.js
- join patterns event processing query operationsrx.testing.js
- used to write unit tests for complex event processing queriesrx.time.js
- time-based event processing query operationsrx.virtualtime.js
- virtual-time-based schedulersOne question you may ask yourself, is why RxJS? What about Promises? Promises are good for solving asynchronous operations such as querying a service with an XMLHttpRequest, where the expected behavior is one value and then completion. The Reactive Extensions for JavaScript unifies both the world of Promises, callbacks as well as evented data such as DOM Input, Web Workers, Web Sockets. Once we have unified these concepts, this enables rich composition.
To give you an idea about rich composition, we can create an autocompletion service which takes the user input from a text input and then query a service, making sure not to flood the service with calls for every key stroke, but instead allow to go at a more natural pace.
First, we'll reference the JavaScript files, including jQuery, although RxJS has no dependencies on jQuery...
<script src="http://code.jquery.com/jquery.js"></script>
<script src="rx.lite.js"></script>
Next, we'll get the user input from an input, listening to the keyup event by using the Rx.Observable.fromEvent
method. This will either use the event binding from jQuery, Zepto, AngularJS, Backbone.js and Ember.js if available, and if not, falls back to the native event binding. This gives you consistent ways of thinking of events depending on your framework, so there are no surprises.
var $input = $('#input'),
$results = $('#results');
/* Only get the value from each key up */
var keyups = Rx.Observable.fromEvent($input, 'keyup')
.map(function (e) {
return e.target.value;
})
.filter(function (text) {
return text.length > 2;
});
/* Now debounce the input for 500ms */
var debounced = keyups
.debounce(500 /* ms */);
/* Now get only distinct values, so we eliminate the arrows and other control characters */
var distinct = debounced
.distinctUntilChanged();
Now, let's query Wikipedia! In RxJS, we can instantly bind to any Promises A+ implementation through the Rx.Observable.fromPromise
method or by just directly returning it, and we wrap it for you.
function searchWikipedia (term) {
return $.ajax({
url: 'http://en.wikipedia.org/w/api.php',
dataType: 'jsonp',
data: {
action: 'opensearch',
format: 'json',
search: term
}
}).promise();
}
Once that is created, now we can tie together the distinct throttled input and then query the service. In this case, we'll call flatMapLatest
to get the value and ensure that we're not introducing any out of order sequence calls.
var suggestions = distinct
.flatMapLatest(searchWikipedia);
Finally, we call the forEach
method on our observable sequence to start pulling data.
suggestions.forEach(
function (data) {
$results
.empty()
.append ($.map(data[1], function (value) {
return $('<li>').text(value);
}));
},
function (error) {
$results
.empty()
.append($('<li>'))
.text('Error:' + error);
});
And there you have it!
Please check out:
Contact us
Tutorials
Reference Material
Community Examples
Presentations
Reactive All the Things - ng-conf 2015 - Martin Gontovnikas & Ben Lesh
Videos
Podcasts
Articles
Books
There are a number of ways to get started with RxJS. The files are available on cdnjs and jsDelivr.
You can use the rx-cli
to perform custom builds to create the RxJS you want:
$ rx --lite --compat --methods select,selectmany,takeuntil,fromevent
git clone https://github.com/Reactive-Extensions/rxjs.git
cd ./rxjs
```bash` $ npm install rx $ npm install -g rx
### Using with Node.js and Ringo.js
```js
var Rx = require('rx');
$ bower install rxjs
$ jam install rx
$ Install-Package RxJS-All
Install-Package RxJS-All
Install-Package RxJS-Lite
Install-Package RxJS-Main
Install-Package RxJS-Aggregates
Install-Package RxJS-Async
Install-Package RxJS-BackPressure
Install-Package RxJS-Binding
Install-Package RxJS-Coincidence
Install-Package RxJS-Experimental
Install-Package RxJS-JoinPatterns
Install-Package RxJS-Testing
Install-Package RxJS-Time
<!-- Just the core RxJS -->
<script src="rx.js"></script>
<!-- Or all of RxJS minus testing -->
<script src="rx.all.js"></script>
<!-- Or keeping it lite -->
<script src="rx.lite.js"></script>
<script src="rx.aggregates.js"></script>
<script src="rx.async.js"></script>
<script src="rx.backpressure.js"></script>
<script src="rx.binding.js"></script>
<script src="rx.coincidencejs"></script>
<script src="rx.experimental.js"></script>
<script src="rx.joinpatterns.js"></script>
<script src="rx.time.js"></script>
<script src="rx.virtualtime.js"></script>
<script src="rx.testing.js"></script>
require({
'paths': {
'rx': 'path/to/rx-lite.js'
}
},
['rx'], function(Rx) {
var obs = Rx.Observable.of(42);
obs.forEach(function (x) { console.log(x); });
});
The Reactive Extensions for JavaScript have no external dependencies any library, so they'll work well with just about any library. We provide bridges and support for various libraries including:
RxJS has been thoroughly tested against all major browsers and supports IE6+, Chrome 4+, FireFox 1+, and Node.js v0.4+.
There are lots of ways to contribute to the project, and we appreciate our contributors. If you wish to contribute, check out our style guide.
You can contribute by reviewing and sending feedback on code checkins, suggesting and trying out new features as they are implemented, submit bugs and help us verify fixes as they are checked in, as well as submit code fixes or code contributions of your own. Note that all code submissions will be rigorously reviewed and tested by the Rx Team, and only those that meet an extremely high bar for both quality and design/roadmap appropriateness will be merged into the source.
Copyright (c) Microsoft Open Technologies, Inc. All rights reserved. Microsoft Open Technologies would like to thank its contributors, a list of whom are at https://github.com/Reactive-Extensions/RxJS/wiki/Contributors.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
FAQs
Library for composing asynchronous and event-based operations in JavaScript
The npm package rx receives a total of 1,106,454 weekly downloads. As such, rx popularity was classified as popular.
We found that rx demonstrated a not healthy version release cadence and project activity because the last version was released a year ago. It has 2 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
At its inaugural meeting, the JSR Working Group outlined plans for an open governance model and a roadmap to enhance JavaScript package management.
Security News
Research
An advanced npm supply chain attack is leveraging Ethereum smart contracts for decentralized, persistent malware control, evading traditional defenses.
Security News
Research
Attackers are impersonating Sindre Sorhus on npm with a fake 'chalk-node' package containing a malicious backdoor to compromise developers' projects.