Security News
Input Validation Vulnerabilities Dominate MITRE's 2024 CWE Top 25 List
MITRE's 2024 CWE Top 25 highlights critical software vulnerabilities like XSS, SQL Injection, and CSRF, reflecting shifts due to a refined ranking methodology.
scryptlib
Advanced tools
Javascript SDK for integration of Bitcoin SV Smart Contracts written in sCrypt language.
Javascript/TypeScript SDK for integration of Bitcoin SV Smart Contracts written in the sCrypt language.
You can install scryptlib
in your project as below:
$ npm install scryptlib
A smart contract is compiled to a locking script template. A contract function call is transformed to an unlocking script. Developers are responsible for setting the locking and unlocking scripts of a transaction properly before sending it to the Bitcoin network. This may include some actions described below:
Instantiate locking script: replace the constructor formal parameters, represented by placeholders in the locking script template, with actual parameters/arguments to form the complete locking script.
Assemble unlocking script: convert the arguments of a contract function call to script format and concatenate them to form the unlocking script.
By using scryptlib
, both scripts can be obtained with ease.
The compiler output results in a JSON file. Itβs a representation used to build locking and unlocking scripts. We call this file a contract artifact file.
There are three ways to generate this file (named as <contract_name>.json
):
compile
programmatically: import { compile } from 'scryptlib';
...
compile(
{
path: contractFilePath // the file path of the contract
},
{
artifact: true // set this flag to be `true` to get the artifact file output
asm: true // set this flag to be `true` to get the asm file output
optimize: false //set this flag to be `true` to get optimized asm opcode
sourceMap: true //set this flag to be `true` to get source map
hex: true //set this flag to be `true` to get hex format script
stdout: false//set this flag to be `true` to make that the compiler will output the compilation result through stdout
}
);
compileAsync
is the asynchronous version of the function compile
import { compileAsync } from 'scryptlib';
...
compileAsync(
{
path: contractFilePath // the file path of the contract
},
settings
) : Promise<CompileResult>;
npx
command in CLI: # install compiler binary
npx scryptlib download
# the latest compiler may be incompatible with the current scryptlib
npx scryptlib download latest
# compiling contract
npx scryptlib compile your_directory/your_scrypt.scrypt
All basic types of the sCrypt language have their corresponding javascript classes in scryptlib. In this way, the type of parameters could be checked and potential bugs can be detected before running.
Types (scrypt) | scryptlib (javascript/typescript) |
---|---|
int | Int(1) or number or bigint |
bool | Bool(true) or boolean |
bytes | Bytes('0001') or stringToBytes("hello world π") |
PubKey | PubKey('0001') |
PrivKey | PrivKey(1) |
Sig | Sig('0001') |
Ripemd160 | Ripemd160('0001') |
Sha1 | Sha1('0001') |
Sha256 | Sha256('0001') |
SigHashType | SigHashType('01') |
SigHashPreimage | SigHashPreimage('010001') |
OpCodeType | OpCodeType('76') |
scryptlib uses javascript array to represent the array types of the sCrypt language.
[[1, 3, 1]] // represent `int[1][3]` in **sCrypt** language
[Bytes("00"), Bytes("00"), Bytes("00")] // represent `bytes[3]` in **sCrypt** language
The structure in sCrypt needs to be represented by object in SDK. When creating a structure, all members must specify values. Use .
to access structure members.
A type alias needs to be represented by a value corresponding to the original type
Structure and type aliases defined in sCrypt:
/*Person is structure and Male, Female are type aliases */
struct Person {
bytes addr;
bool isMale;
int age;
}
type Male = Person;
type Female = Person;
contract PersonContract {
Male man;
Female woman;
...
}
Access Structure and type aliases by SDK :
const PersonContract = buildContractClass(loadArtifact('person.json'));
let man = {
isMale: true,
age: 14n,
addr: Bytes("68656c6c6f20776f726c6421")
};
man.age = 20n;
let woman = {
isMale: false,
age: 18n,
addr: Bytes("68656c6c6f20776f726c6421")
};
woman.addr = Bytes("")
const instance = new PersonContract(man, woman);
HashedMap is a hashtable-like data structure.
Library is another composite types. When the constructor parameter of the contract contains library, we have to pass an array according to the constructor parameter of the library.
Library defined in sCrypt:
library L {
private int x;
constructor(int a, int b) {
this.x = a + b;
}
function f() : int {
return this.x;
}
}
contract Test {
public int x;
L l;
public function unlock(int x) {
require(this.l.f() == x + this.x);
}
}
Access Library by SDK :
const Test = buildContractClass(loadArtifact('test.json'));
let l = [1n, 2n];
let test = new Test(1n, l);
Sometimes the constructor parameters of the library may be generic types. At this time, the sdk will deduce the generic type based on the constructor arguments you pass.
Both deploying a contract and calling a contract function are achieved by sending a transaction. Generally speaking,
There are 2 steps.
You can use the artifact file to build a reflected contract class in Javascript/TypeScript like this:
const MyContract = buildContractClass(JSON.parse(artifactFileContent));
To create an instance of the contract class, for example:
const instance = new MyContract(1234n, true, ...parameters);
To get the locking script, use:
const lockingScript = instance.lockingScript;
// To convert it to ASM/hex format
const lockingScriptASM = lockingScript.toASM();
const lockingScriptHex = lockingScript.toHex();
To get the unlocking script, just call the function and turn the result to bsv.Script
object, for example:
const funcCall = instance.someFunc(new Sig('0123456'), new Bytes('aa11ff'), ...parameters);
const unlockingScript = funcCall.toScript();
// To convert it to ASM/hex format
const unlockingScriptASM = unlockingScript.toASM();
const unlockingScriptHex = unlockingScript.toHex();
Chained APIs make building transactions super easy.
A useful method verify(txContext)
is provided for each contract function call. It would execute the function call with the given context locally. The txContext
argument provides some context information of the current transaction, needed only if signature is checked inside the contract.
{
tx?: bsv.Transaction; // current transaction represented in bsv.Transaction object
inputIndex?: number; // input index, default value: 0
/**
* @deprecated no need any more
*/
inputSatoshis?: number; // input amount in satoshis
opReturn?: string; // contract state in ASM format
opReturnHex?: string; // contract state in hex format
}
It returns an object:
{
success: boolean; // script evaluates to true or false
error: string; // error message, empty if success
}
It usually appears in unit tests, like:
const context = { tx, inputIndex, inputSatoshis };
// 1) set context per verify()
const funcCall = instance.someFunc(Sig('0123456'), Bytes('aa11ff'), ...parameters);
const result = funcCall.verify(context);
// 2) alternatively, context can be set at instance level and all following verify() will use it
instance.txContext = context;
const result = funcCall.verify();
expect(result.success, result.error).to.be.true;
assert.isFalse(result.success, result.error);
sCrypt offers stateful contracts. Declare any property that is part of the state with a decorator @state
in a contract, for example:
contract Counter {
@state
int counter;
constructor(int counter) {
this.counter = counter;
}
}
Use the initial state to instantiate the contract and read the state by accessing the properties of the contract instance.
const instance = new Counter(0n);
let state = instance.counter;
// update state
instance.counter++;
Then use instance.getNewStateScript()
to get a locking script that includes the new state. It accepts an object as a parameter. Each key of the object is the name of a state property, and each value is the value of the state property. You should provide all state properties in the object.
const tx = newTx(inputSatoshis);
let newLockingScript = instance.getNewStateScript({
counter: 1
});
tx.addOutput(new bsv.Transaction.Output({
script: newLockingScript,
satoshis: outputAmount
}))
preimage = getPreimage(tx, instance.lockingScript, inputSatoshis)
You can also access the state of the contract by accessing the properties of the instance.
instance.counter++;
instance.person.name = Bytes('0001');
You can also maintain state manually to, for example, optimize your contract or use customized state de/serialization rawstate.
Assembly variables can be replaced with literal Script in ASM format using replace()
. Each variable is prefixed by its unique scope, namely, the contract and the function it is under.
const asmVars = {
'contract1.function1.variable1': 'ff41',
'contract2.function2.variable2': 'OP_4'
};
instance.replaceAsmVars(asmVars);
You could find more examples using scryptlib
in the boilerplate repository.
In addition to using a constructor to create a contract, you can also use a raw transaction to construct it.
const axios = require('axios');
const Counter = buildContractClass(loadArtifact("counter_debug.json"));
let response = await axios.get("https://api.whatsonchain.com/v1/bsv/test/tx/7b9bc5c67c91a3caa4b3212d3a631a4b61e5c660f0369615e6e3a969f6bef4de/hex")
// constructor from raw Transaction.
let counter = Counter.fromTransaction(response.data, 0/** output index**/);
// constructor from Utxo lockingScript
let counterClone = Counter.fromHex(counter.lockingScript.toHex());
Some contracts use Bigint
to construct or unlock. but some browsers do not support Bigint
, such as IE11. In this case, we use strings to build Bigint
.
// polyfill
import 'react-app-polyfill/ie11';
import 'core-js/features/number';
import 'core-js/features/string';
import 'core-js/features/array';
let demo = new Demo(Int("11111111111111111111111111111111111"), 1n);
let result = demo.add(Int("11111111111111111111111111111111112")).verify();
console.assert(result.success, result.error)
2.1.21
FAQs
Javascript SDK for integration of Bitcoin SV Smart Contracts written in sCrypt language.
The npm package scryptlib receives a total of 540 weekly downloads. As such, scryptlib popularity was classified as not popular.
We found that scryptlib demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago.Β It has 0 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
MITRE's 2024 CWE Top 25 highlights critical software vulnerabilities like XSS, SQL Injection, and CSRF, reflecting shifts due to a refined ranking methodology.
Security News
In this segment of the Risky Business podcast, Feross Aboukhadijeh and Patrick Gray discuss the challenges of tracking malware discovered in open source softare.
Research
Security News
A threat actor's playbook for exploiting the npm ecosystem was exposed on the dark web, detailing how to build a blockchain-powered botnet.