Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

skmeans

Package Overview
Dependencies
Maintainers
1
Versions
32
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

skmeans - npm Package Compare versions

Comparing version 0.8.0 to 0.8.1

package-lock.json

0

browser.js

@@ -0,0 +0,0 @@ "use strict";

@@ -0,0 +0,0 @@ "use strict";

/*! skmeans 2017-07-17 */
"use strict";!function r(n,t,o){function a(f,i){if(!t[f]){if(!n[f]){var u="function"==typeof require&&require;if(!i&&u)return u(f,!0);if(e)return e(f,!0);var v=new Error("Cannot find module '"+f+"'");throw v.code="MODULE_NOT_FOUND",v}var c=t[f]={exports:{}};n[f][0].call(c.exports,function(r){var t=n[f][1][r];return a(t||r)},c,c.exports,r,n,t,o)}return t[f].exports}for(var e="function"==typeof require&&require,f=0;f<o.length;f++)a(o[f]);return a}({1:[function(r,n,t){!function(n){var t=r("./main.js");n.skmeans=t}(window)},{"./main.js":2}],2:[function(r,n,t){function o(r,n,t){for(var o=r.length,a=0,e=0;e<o;e++){var f=(r[e]||0)-(n[e]||0);a+=f*f}return t?Math.sqrt(a):a}function a(r,n,t){var o=Math.abs(r-n);return t?o:o*o}function e(r,n){var t=this,e=r[0].length?o:a,f=[],i=r.length,u=r[Math.floor(Math.random()*i)];f.push(u);for(;f.length<n;)!function(){var n=r.map(function(r){var n=f.map(function(n){return e(r,n)});return Math.min.apply(t,n)}),o=n.reduce(function(r,n){return r+n},0),a=n.map(function(n,t){return{i:t,v:r[t],pr:n/o}});a.sort(function(r,n){return r.pr-n.pr}),a.forEach(function(r,n){r.cs=r.pr+(n>0?a[n-1].cs:0)});var i=Math.random(),u=a.filter(function(r){return r.cs>=i});f.push(u[0].v)}();return f}function f(r,n,t){t=t||[];for(var o=0;o<r;o++)t[o]=n;return t}var i=1e4;n.exports=function(r,n,t,a){var u=[],v=[],c=[],s=[],h=!1,p=a||i,l=r.length,m=r[0].length,d=m>0;if(t)u="kmpp"==t?e(r,n):t;else for(var M=0;M<n;M++)u.push(r[Math.floor(Math.random()*l)]);do{for(var g=0;g<l;g++){for(var x=1/0,k=0,q=0;q<n;q++)(s=d?o(r[g],u[q]):Math.abs(r[g]-u[q]))<x&&(x=s,k=q);c[g]=k}for(var w=[],b=[],v=[],y=0;y<n;y++)w[y]=0,b[y]=d?f(m,0,b[y]):0,v[y]=u[y];if(d){for(var E=0;E<n;E++)u[E]=[];for(var O=0;O<l;O++){for(var j=c[O],D=b[j],N=r[O],U=0;U<m;U++)D[U]+=N[U];w[j]++}h=!0;for(var _=0;_<n;_++){for(var C=u[_],F=b[_],L=v[_],T=w[_],z=0;z<m;z++)C[z]=F[z]/T||0;if(h)for(var A=0;A<m;A++)if(L[A]!=C[A]){h=!1;break}}}else{for(var B=0;B<l;B++){var G=c[B];b[G]+=r[B],w[G]++}for(var H=0;H<n;H++)u[H]=b[H]/w[H]||0;h=!0;for(var I=0;I<n;I++)if(v[I]!=u[I]){h=!1;break}}h=h||--p<=0}while(!h);return{it:i-p,k:n,idxs:c,centroids:u}}},{}]},{},[1]);

@@ -0,0 +0,0 @@ module.exports = function(grunt) {

@@ -28,2 +28,33 @@ /*jshint esversion: 6 */

function kmrand(data,k) {
var map = {}, list = [];
var ks = [];
data.forEach(d=>{
var key = JSON.stringify(d);
map[key] = map[k]||d;
});
for(var key in map) list.push(map[key]);
if(k>list.length) {
throw new Error("Cluster size greater than distinct data points");
}
else {
var len = data.length, map = {};
for(let i=0;i<k;i++) {
var b = false;
while(!b) {
var v = list[Math.floor(Math.random()*len)];
var key = JSON.stringify(v);
if(!map[key]) {
ks.push(v);
map[key] = true;
b = true;
}
}
}
}
return ks;
}
/**

@@ -85,6 +116,8 @@ * K-means++ initial centroid selection

if(!initial) {
for(let i=0;i<k;i++) {
for(let i=0;i<k;i++)
ks.push(data[Math.floor(Math.random()*len)]);
}
}
else if(initial=="kmrand") {
ks = kmrand(data,k);
}
else if(initial=="kmpp") {

@@ -104,3 +137,3 @@ ks = kmpp(data,k);

var dist = multi? eudist(data[i],ks[j]) : Math.abs(data[i]-ks[j]);
if(dist<min) {
if(dist<=min) {
min = dist;

@@ -130,3 +163,3 @@ idx = j;

vsum = sum[idx], // Sum values for this centroid
vect = data[i]; // Current vector
vect = data[idx]; // Current vector

@@ -150,2 +183,3 @@ // Accumulate value on the centroid for current vector

ksj[h] = sumj[h]/cj || 0; // New centroid
if(ksj[h]==0) debugger;
}

@@ -152,0 +186,0 @@ // Find if centroids have moved

2

package.json
{
"name": "skmeans",
"version": "0.8.0",
"version": "0.8.1",
"description": "Super fast simple kmeans clustering for unidimiensional and multidimensional data. Works in node and browser",

@@ -5,0 +5,0 @@ "author": "David Gómez Matarrodona <solzimer@gmail.com>",

@@ -53,3 +53,5 @@ # skmeans

* **k** Number of clusters
* **centroids** Optional. Initial centroid values. If not provided, the algorith will try to choose an apropiate ones. You can pass **"kmpp"** as argument, so the algorythm will use the [k-means++](https://en.wikipedia.org/wiki/K-means%2B%2B) cluster initialization method.
* **centroids** Optional. Initial centroid values. If not provided, the algorith will try to choose an apropiate ones. Alternative values can be:
* **"kmrand"** Cluster initialization will be random, but with extra checking, so there will no be two equal initial centroids.
* **"kmpp"** The algorythm will use the [k-means++](https://en.wikipedia.org/wiki/K-means%2B%2B) cluster initialization method.
* **iterations** Optional. Maximum number of iterations. If not provided, it will be set to 10000.

@@ -56,0 +58,0 @@

@@ -0,0 +0,0 @@ const skmeans = require("../main.js");

@@ -0,0 +0,0 @@ const skmeans = require("../main.js");

@@ -0,0 +0,0 @@ const skmeans = require("../main.js");

Sorry, the diff of this file is not supported yet

Sorry, the diff of this file is not supported yet

Sorry, the diff of this file is not supported yet

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc