B+ tree
B+ trees are ordered collections of key-value pairs, sorted by key.
This is a fast B+ tree implementation, largely compatible with the standard Map, but with a much more diverse and powerful API. To use it, import BTree from 'sorted-btree'
.
BTree
is faster and/or uses less memory than other popular JavaScript sorted trees (see Benchmarks). However, data structures in JavaScript tend to be slower than the built-in Array
and Map
data structures in typical cases, because the built-in data structures are mostly implemented in a faster language such as C++. Even so, if you have a large amount of data that you want to keep sorted, the built-in data structures will not serve you well, and BTree
offers features like fast cloning that the built-in types don't.
Features
- Requires ES5 only (
Symbol.iterator
is not required but is used if defined.) - Includes typings (
BTree
was written in TypeScript) - API similar to ES6
Map
with methods such as size(), clear()
,
forEach((v,k,tree)=>{}), get(K), set(K,V), has(K), delete(K)
,
plus iterator functions keys()
, values()
and entries()
. - Supports keys that are numbers, strings, arrays of numbers/strings,
Date
,
and objects that have a valueOf()
method that returns a number or string. - Other data types can also be supported with a custom comparator (second
constructor argument). - Supports O(1) fast cloning with subtree sharing. This works by marking the
root node as "shared between instances". This makes the tree read-only
with copy-on-edit behavior; both copies of the tree remain mutable.
I call this category of data structure "semi-persistent" because AFAIK no
one else has given it a name; it walks the line between mutating and
persistent.
- Includes persistent methods such as
with
and without
, which return a
modified tree without changing the original (in O(log(size)) time). - When a node fills up, items are shifted to siblings when possible to
keep nodes near their capacity, to improve memory utilization.
- Efficiently supports sets (keys without values). The collection does
not allocate memory for values if the value
undefined
is associated
with all keys in a given node. - Includes neat stuff such as
Range
methods for batch operations - Throws an exception if you try to use
NaN
as a key, but infinity is allowed. - No dependencies. 15K minified.
- Includes a lattice of interfaces for TypeScript users (see below)
Additional operations supported on this B+ tree
- Set a value only if the key does not already exist:
t.setIfNotPresent(k,v)
- Set a value only if the key already exists:
t.changeIfPresent(k,v)
- Iterate in backward order:
for (pair of t.entriesReversed()) {}
- Iterate from a particular first element:
for (let p of t.entries(first)) {}
- Convert to an array:
t.toArray()
, t.keysArray()
, t.valuesArray()
- Get pairs for a range of keys ([K,V][]):
t.getRange(loK, hiK, includeHi)
- Delete a range of keys and their values:
t.deleteRange(loK, hiK, includeHi)
- Scan all items:
t.forEachPair((key, value, index) => {...})
- Scan a range of items:
t.forRange(lowKey, highKey, includeHiFlag, (k,v) => {...})
- Count the number of keys in a range:
c = t.forRange(loK, hiK, includeHi, undefined)
- Get smallest or largest key:
t.minKey()
, t.maxKey()
- Get next larger key/pair than
k
: t.nextHigherKey(k)
, t.nextHigherPair(k)
- Get largest key/pair that is lower than
k
: t.nextLowerKey(k)
, t.nextLowerPair(k)
- Freeze to prevent modifications:
t.freeze()
(you can also t.unfreeze()
) - Fast clone:
t.clone()
- For more information, see full documentation in the source code.
Note: Confusingly, the ES6 Map.forEach(c)
method calls c(value,key)
instead of c(key,value)
, in contrast to other methods such as set()
and entries()
which put the key first. I can only assume that they reversed the order on the theory that users would usually want to examine values and ignore keys. BTree's forEach()
therefore works the same way, but a second method .forEachPair((key,value)=>{...})
is provided which sends you the key first and the value second; this method is slightly faster because it is the "native" for-each method for this class.
Note: Duplicate keys are not allowed (supporting duplicates properly is complex).
The "scanning" methods (forEach, forRange, editRange, deleteRange
) will normally return the number of elements that were scanned. However, the callback can return {break:R}
to stop iterating early and return a value R
from the scanning method.
Functional methods
- Get a copy of the tree including only items fitting a criteria:
t.filter((k,v) => k.fitsCriteria())
- Get a copy of the tree with all values modified:
t.mapValues((v,k) => v.toString())
- Reduce a tree (see below):
t.reduce((acc, pair) => acc+pair[1], 0)
Persistent methods
- Get a new tree with one pair changed:
t.with(key, value)
- Get a new tree with multiple pairs changed:
t.withPairs([[k1,v1], [k2,v2]])
- Ensure that specified keys exist in a new tree:
t.withKeys([k1,k2])
- Get a new tree with one pair removed:
t.without(key)
- Get a new tree with specific pairs removed:
t.withoutKeys(keys)
- Get a new tree with a range of keys removed:
t.withoutRange(low, high, includeHi)
Things to keep in mind: I ran a test which suggested t.with
is three times slower than t.set
. These methods do not return a frozen tree even if the original tree was frozen (for performance reasons, e.g. frozen trees use slightly more memory.)
Examples
Custom comparator
Given a set of {name: string, age: number}
objects, you can create a tree sorted by name and then by age like this:
var tree = new BTree(undefined, (a, b) => {
if (a.name > b.name)
return 1;
else if (a.name < b.name)
return -1;
else
return a.age - b.age;
});
tree.set({name:"Bill", age:17}, "happy");
tree.set({name:"Fran", age:40}, "busy & stressed");
tree.set({name:"Bill", age:55}, "recently laid off");
tree.forEachPair((k, v) => {
console.log(`Name: ${k.name} Age: ${k.age} Status: ${v}`);
});
reduce
The reduce
method performs a reduction operation, like the reduce
method of Array
. It is used to combine all keys, values or pairs into a single value, or to perform type conversions conversions. reduce
is best understood by example. So here's how you can multiply all the keys in a tree together:
var product = tree.reduce((p, pair) => p * pair[0], 1)
It means "start with p=1
, and for each pair change p
to p * pair[0]
" (pair[0]
is the key). You may be thinking "hey, wouldn't it make more sense if the 1
argument came first?" Yes it would, but in Array
the parameter is second, so it must also be second in BTree
for consistency.
Here's a similar example that adds all values together:
var total = tree.reduce((sum, pair) => sum + pair[1], 0)
This final example converts the tree to a Map:
var map = tree.reduce((m, pair) => m.set(pair[0], pair[1]), new Map())`
Remember that m.set
returns m
, which is different from BTree
where tree.set
returns a boolean indicating whether a new key was added.
editRange
You can scan a range of items and selectively delete or change some of them using t.editRange
. For example, the following code adds an exclamation mark to each non-boring value and deletes key number 4:
var t = new BTree().setRange([[1,"fun"],[2,"yay"],[4,"whee"],[8,"zany"],[10,"boring"]);
t.editRange(t.minKey(), t.maxKey(), true, (k, v) => {
if (k === 4)
return {delete: true};
if (v !== "boring")
return {value: v + '!'};
})
Interface lattice
BTree includes a lattice of interface types representing subsets of BTree's interface. I would encourage other authors of map/dictionary/tree/hashtable types to utilize these interfaces. These interfaces can be divided along three dimensions:
1. Read/write access
I have defined several kinds of interfaces along the read/write access dimension:
- Source: A "source" is a read-only interface (
ISetSource<K>
and IMapSource<K,V>
). At minimum, sources include a size
property and methods get
, has
, forEach
, and keys
. - Sink: A "sink" is a write-only interface (
ISetSink<K>
and IMapSink<K,V>
). At minimum, sinks have set
, delete
and clear
methods. - Mutable: An interface that combines the source and sink interfaces (
ISet<K>
and IMap<K,V>
). - Functional: An interface for persistent data structures. It combines a read-only interface with methods that return a modified copy of the collection. The functional interfaces end with
F
(ISetF<K>
and IMapF<K,V>
).
2. Sorted versus unsorted
The Sorted
interfaces extend the non-sorted interfaces with queries that only a sorted collection can perform efficiently, such as minKey()
and nextHigherKey(k)
. At minimum, sorted interfaces add methods minKey
, maxKey
, nextHigherKey
, nextLowerKey
, and forRange
, plus iterators that return keys/values/pairs in sorted order and accept a firstKey
parameter to control the starting point of iteration.
3. Set versus map
A map is a collection of keys with values, while a set is a collection of keys without values.
For the most part, each Set
interface is a subset of the corresponding Map
interface with "values" removed. For example, MapF<K,V>
extends SetF<K>
. An exception to this is that IMapSink<K, V>
could not be derived from ISetSink<K>
(and thus IMap<K,V>
is not derived from ISet<K>
) because the type V
does not necessarily include undefined
. Therefore you can write set.set(key)
to add a key to a set, but you cannot write map.set(key)
without specifying a value (in TypeScript this is true even if V
includes undefined.)
List of interfaces
All of these interfaces use any
as the default type of K
and V
.
ISetSource<K>
ISetSink<K>
ISet<K> extends ISetSource<K>, ISetSink<K>
IMapSource<K, V> extends ISetSource<K>
IMapSink<K, V>
IMap<K, V> extends IMapSource<K,V>, IMapSink<K,V>
ISortedSetSource<K> extends ISetSource<K>
ISortedSet<K> extends ISortedSetSource<K>, ISetSink<K>
ISortedMapSource<K,V> extends IMapSource<K, V>, ISortedSetSource<K>
ISortedMap<K,V> extends IMap<K,V>, ISortedMapSource<K,V>
ISetF<K> extends ISetSource<K>
IMapF<K, V> extends IMapSource<K,V>, ISetF<K>
ISortedSetF<K> extends ISetF<K>, ISortedSetSource<K>
ISortedMapF<K,V> extends ISortedSetF<K>, IMapF<K,V>, ISortedMapSource<K,V>
If the lattice were complete there would be 16 interfaces (422). In fact there are only 14 interfaces because ISortedMapSink<K,V>
and ISortedSetSink<K, V>
don't exist, because sorted sinks are indistinguishable from unsorted sinks.
BTree<K,V>
implements all of these interfaces except ISetSink<K>
, ISet<K>
, and ISortedSet<K>
.
ES6 Map/Set compatibility
The IMap<K,V>
interface is compatible with the ES6 Map<K,V>
type as well as BTree<K,V>
. In order to accomplish this, compromises had to be made:
- The
set(k,v)
method returns any
for compatibility with both BTree
and Map
, since BTree
returns boolean
(true if an item was added or false if it already existed), while Map
returns this
. - ES6's
Map.forEach(c)
method calls c(value,key)
instead of c(key,value)
, unlike all other methods which put the key first. Therefore IMap
works the same way. Unfortunately, this means that ISetSource<K>
, the supertype of IMapSource<K,V>
, cannot sanely have a forEach
method because if it did, the first parameter to the callback would be unused. - The batch operations
setPairs
, deletePairs
and reduce
are left out because they are not defined by Map
. Instead, these methods are defined in ISortedMap<K,V>
. - Likewise, the functional operations
reduce
, filter
and mapValues
are not included in IMap
, but they are defined in IMapF<K,V>
and (except mapValues
) ISetF<K>
.
Similarly, ISet<K>
is compatible with ES6 Set
. Again there are compromises:
- The
set
method is renamed add
in Set
and ISet<K>
, so add
exists on BTree.prototype
as a synonym for set
. - There is no
forEach
method for reasons alluded to above. Use keys()
instead. - There is no
filter
or reduce
because Set
doesn't support them.
Although BTree<K,V>
doesn't directly implement ISet<K>
, it does implement ISetSource<K>
and it is safe to cast BTree<K,V>
to ISet<K>
or ISortedSet<K>
provided that V
is allowed to be undefined.
Benchmarks (in milliseconds for integer keys/values)
- These benchmark results were gathered on my PC in Node v10.4.1, July 2018
BTree
is 3 to 5 times faster than SortedMap
and SortedSet
in the collections
packageBTree
has similar speed to RBTree
at smaller sizes, but is faster at very large sizes and uses less memory because it packs many keys into one array instead of allocating an extra heap object for every key.- If you need functional persistence,
functional-red-black-tree
is remarkably fast for a persistent tree, but BTree
should require less memory unless you frequently use clone/with/without
and are saving snapshots of the old tree to prevent garbage collection. - B+ trees normally use less memory than hashtables (such as the standard
Map
), although in JavaScript this is not guaranteed because the B+ tree's memory efficiency depends on avoiding wasted space in the arrays for each node, and JavaScript provides no way to detect or control the capacity of an array's underlying memory area. Also, Map
should be faster because it does not sort its keys. - "Sorted array" refers to
SortedArray<K,V>
, a wrapper class for an array of [K,V]
pairs. Benchmark results were not gathered for sorted arrays with one million elements (it takes too long)
Insertions at random locations: sorted-btree vs the competition
0.8 Insert 1000 pairs in sorted-btree's BTree
0.4 Insert 1000 pairs in sorted-btree's BTree set (no values)
2.5 Insert 1000 pairs in collections' SortedMap
1.6 Insert 1000 pairs in collections' SortedSet (no values)
0.7 Insert 1000 pairs in functional-red-black-tree
0.5 Insert 1000 pairs in bintrees' RBTree (no values)
8.6 Insert 10000 pairs in sorted-btree's BTree
5.1 Insert 10000 pairs in sorted-btree's BTree set (no values)
37.8 Insert 10000 pairs in collections' SortedMap
25.8 Insert 10000 pairs in collections' SortedSet (no values)
8.7 Insert 10000 pairs in functional-red-black-tree
5.4 Insert 10000 pairs in bintrees' RBTree (no values)
95.9 Insert 100000 pairs in sorted-btree's BTree
69.1 Insert 100000 pairs in sorted-btree's BTree set (no values)
564 Insert 100000 pairs in collections' SortedMap
366.5 Insert 100000 pairs in collections' SortedSet (no values)
192.5 Insert 100000 pairs in functional-red-black-tree
107.3 Insert 100000 pairs in bintrees' RBTree (no values)
1363 Insert 1000000 pairs in sorted-btree's BTree
909 Insert 1000000 pairs in sorted-btree's BTree set (no values)
8783 Insert 1000000 pairs in collections' SortedMap
5443 Insert 1000000 pairs in collections' SortedSet (no values)
3356 Insert 1000000 pairs in functional-red-black-tree
1581 Insert 1000000 pairs in bintrees' RBTree (no values)
Insert in order, delete: sorted-btree vs the competition
0.6 Insert 1000 sorted pairs in B+ tree
0.4 Insert 1000 sorted keys in B+ tree set (no values)
0.6 Insert 1000 sorted pairs in collections' SortedMap
0.4 Insert 1000 sorted keys in collections' SortedSet (no values)
0.7 Insert 1000 sorted pairs in functional-red-black-tree
0.5 Insert 1000 sorted keys in bintrees' RBTree (no values)
1 Delete every second item in B+ tree
3 Delete every second item in B+ tree set
1 Bulk-delete every second item in B+ tree set
1 Delete every second item in collections' SortedMap
1 Delete every second item in collections' SortedSet
5 Delete every second item in functional-red-black-tree
10 Delete every second item in bintrees' RBTree
6.5 Insert 10000 sorted pairs in B+ tree
3.9 Insert 10000 sorted keys in B+ tree set (no values)
6.5 Insert 10000 sorted pairs in collections' SortedMap
3.9 Insert 10000 sorted keys in collections' SortedSet (no values)
12.4 Insert 10000 sorted pairs in functional-red-black-tree
5.8 Insert 10000 sorted keys in bintrees' RBTree (no values)
4 Delete every second item in B+ tree
4 Delete every second item in B+ tree set
3 Bulk-delete every second item in B+ tree set
13 Delete every second item in collections' SortedMap
7 Delete every second item in collections' SortedSet
8 Delete every second item in functional-red-black-tree
6 Delete every second item in bintrees' RBTree
75.9 Insert 100000 sorted pairs in B+ tree
45 Insert 100000 sorted keys in B+ tree set (no values)
98.7 Insert 100000 sorted pairs in collections' SortedMap
61.4 Insert 100000 sorted keys in collections' SortedSet (no values)
145.8 Insert 100000 sorted pairs in functional-red-black-tree
82.6 Insert 100000 sorted keys in bintrees' RBTree (no values)
79 Delete every second item in B+ tree
52 Delete every second item in B+ tree set
18 Bulk-delete every second item in B+ tree set
166 Delete every second item in collections' SortedMap
58 Delete every second item in collections' SortedSet
64 Delete every second item in functional-red-black-tree
74 Delete every second item in bintrees' RBTree
700 Insert 1000000 sorted pairs in B+ tree
452.5 Insert 1000000 sorted keys in B+ tree set (no values)
1069 Insert 1000000 sorted pairs in collections' SortedMap
864 Insert 1000000 sorted keys in collections' SortedSet (no values)
1531 Insert 1000000 sorted pairs in functional-red-black-tree
966 Insert 1000000 sorted keys in bintrees' RBTree (no values)
435 Delete every second item in B+ tree
291 Delete every second item in B+ tree set
159 Bulk-delete every second item in B+ tree set
1447 Delete every second item in collections' SortedMap
796 Delete every second item in collections' SortedSet
573 Delete every second item in functional-red-black-tree
537 Delete every second item in bintrees' RBTree
Insertions at random locations: sorted-btree vs Array vs Map
0.5 Insert 1000 pairs in sorted array
0.6 Insert 1000 pairs in B+ tree
0.1 Insert 1000 pairs in ES6 Map (hashtable)
13.2 Insert 10000 pairs in sorted array
7.2 Insert 10000 pairs in B+ tree
1.3 Insert 10000 pairs in ES6 Map (hashtable)
56980 Insert 100000 pairs in sorted array
122 Insert 100000 pairs in B+ tree
17.7 Insert 100000 pairs in ES6 Map (hashtable)
SLOW! Insert 1000000 pairs in sorted array
1354 Insert 1000000 pairs in B+ tree
304.5 Insert 1000000 pairs in ES6 Map (hashtable)
Insert in order, scan, delete: sorted-btree vs Array vs Map
0.4 Insert 1000 sorted pairs in array
0.6 Insert 1000 sorted pairs in B+ tree
0.1 Insert 1000 sorted pairs in Map hashtable
0 Sum of all values with forEach in sorted array: 27350180
0 Sum of all values with forEachPair in B+ tree: 27350180
0 Sum of all values with forEach in B+ tree: 27350180
0 Sum of all values with iterator in B+ tree: 27350180
0 Sum of all values with forEach in Map: 27350180
0.1 Delete every second item in sorted array
0.1 Delete every second item in B+ tree
0 Delete every second item in Map hashtable
3.9 Insert 10000 sorted pairs in array
6.7 Insert 10000 sorted pairs in B+ tree
1.3 Insert 10000 sorted pairs in Map hashtable
0.2 Sum of all values with forEach in sorted array: 2716659330
0.3 Sum of all values with forEachPair in B+ tree: 2716659330
0.4 Sum of all values with forEach in B+ tree: 2716659330
0.3 Sum of all values with iterator in B+ tree: 2716659330
0.2 Sum of all values with forEach in Map: 2716659330
1.2 Delete every second item in sorted array
1.1 Delete every second item in B+ tree
0.3 Delete every second item in Map hashtable
68.4 Insert 100000 sorted pairs in array
72.7 Insert 100000 sorted pairs in B+ tree
18.4 Insert 100000 sorted pairs in Map hashtable
2.5 Sum of all values with forEach in sorted array: 275653049020
3.3 Sum of all values with forEachPair in B+ tree: 275653049020
4.5 Sum of all values with forEach in B+ tree: 275653049020
2.8 Sum of all values with iterator in B+ tree: 275653049020
2.2 Sum of all values with forEach in Map: 275653049020
2420 Delete every second item in sorted array
14.4 Delete every second item in B+ tree
3.7 Delete every second item in Map hashtable
969 Insert 1000000 sorted pairs in array
773 Insert 1000000 sorted pairs in B+ tree
305.5 Insert 1000000 sorted pairs in Map hashtable
25.3 Sum of all values with forEach in sorted array: 27510295368690
32.4 Sum of all values with forEachPair in B+ tree: 27510295368690
46.1 Sum of all values with forEach in B+ tree: 27510295368690
29.9 Sum of all values with iterator in B+ tree: 27510295368690
22 Sum of all values with forEach in Map: 27510295368690
SLOW! Delete every second item in sorted array
305.5 Delete every second item in B+ tree
95.6 Delete every second item in Map hashtable
Version history
v1.2
- Added a complete lattice of interfaces as described above.
- Interfaces have been moved to a separate interfaces.d.ts file which is re-exported by the main module in b+tree.d.ts.
v1.1
- Added
isEmpty
property getter - Added
nextHigherPair
, nextHigherKey
, nextLowerPair
, nextLowerKey
methods - Added
editAll
, which is like editRange
but touches all keys - Added
deleteKeys
for deleting a sequence of keys (iterable) - Added persistent methods
with
, withPairs
, withKeys
, without
, withoutKeys
, withoutRange
- Added functional methods
filter
, reduce
, mapValues
- Added
greedyClone
for cloning nodes immediately, to avoid marking the original tree as shared which slows it down. - Relaxed type constraint on second parameter of
entries
/entriesReversed
- Renamed
setRange
to setPairs
for logical consistency with withoutPairs
and withoutRange
. The old name is deprecated but added to the prototype
as a synonym. setPairs
returns the number of pairs added instead of this
. - Added export
EmptyBTree
, a frozen empty tree
v1.0: Initial version
- With fast cloning and all that good stuff
Endnote
♥ This package was made to help people learn TypeScript & React.
Are you a C# developer? You might like the similar data structures I made for C#:
BDictionary, BList, etc. See http://core.loyc.net/collections/
You might think that the package name "sorted btree" is overly redundant, but I did make a data structure similar to B+ Tree that is not sorted. I called it the A-List (C#). But yeah, the names btree
and bplustree
were already taken, so what was I supposed to do, right?