think-bayes
An algorithm collection of probability and statistics for browser and Node.js environment.
In progress...
适用于 浏览器 和 Node.js 环境的概率统计算法集(非正式版本,功能亟待完善,努力 coding 中...)
Install
yarn add think-bayes
Quickstart
Let us resolve the cookie problem by using the class Suite
:
import { Suite } from 'think-bayes';
class Cookie extends Suite {
mixes = {
Bowl1: {
vanilla: 0.75,
chocolate: 0.25,
},
Bowl2: {
vanilla: 0.5,
chocolate: 0.5,
},
};
likelihood(data, hypo) {
const mix = this.mixes[hypo];
const like = mix[data];
return like;
}
}
const hypos = ['Bowl1', 'Bowl2'];
const pmf = new Cookie(hypos);
pmf.update('vanilla');
const result = pmf.render();
console.log(result);
pmf.print();
In addition, here are some simple demos you can refer directly to resolve some classic problems of probability and statistics.
Algorithm Classes
This library provides some ES Classes following for calculations related to probability and statistics.
These classes can be imported by the same way following:
import { Pmf, Cdf, Pdf, Suite } from 'think-bayes';
DictWrapper
Pmf inherits DictWrapper
Cdf inherits DictWrapper
Pdf
Suite inherits Pmf
Hist inherits DictWrapper
Interpolater
Joint inherits Pmf
GaussianPdf inherits Pdf
GaussianKde
EstimatedPdf inherits Pdf
Utility Functions
This library provides some Utility Functions following for calculations related to probability and statistics.
These functions can be imported by the same way following:
import { Util } from 'think-bayes';
const { odds, probability, percentile } = Util;
odds(p)
Computes odds for a given probability.
Example: p=0.75 means 75 for and 25 against, or 3:1 odds in favor.
Note: when p=1, the formula for odds divides by zero, which is
normally undefined. But I think it is reasonable to define Odds(1)
to be infinity, so that's what this function does.
@Params:
param | type | description |
---|
p | number | float 0~1 |
@Returns: float odds
probability(o)
Computes the probability corresponding to given odds.
Example: o=2 means 2:1 odds in favor, or 2/3 probability
@Params:
param | type | description |
---|
o | number | float odds, strictly positive |
@Returns: float probability
probability2(yes, no)
Computes the probability corresponding to given odds.
Example: yes=2, no=1 means 2:1 odds in favor, or 2/3 probability.
@Params:
param | type | description |
---|
yes | number | int or float odds in favor |
no | number | int or float odds in favor |
percentile(pmf, percentage)
Computes a percentile of a given Pmf.
@Params:
param | type | description |
---|
pmf | pmf | |
percentage | number | float 0-100 |
credibleInterval(pmf, percentage = 90)
Computes a credible interval for a given distribution.
If percentage=90, computes the 90% CI.
@Params:
param | type | description |
---|
pmf | pmf | Pmf object representing a posterior distribution |
percentage | number | float between 0 and 100 |
@Returns: sequence of two floats, low and high
pmfProbLess(pmf1, pmf2)
Probability that a value from pmf1 is less than a value from pmf2.
@Params:
param | type | description |
---|
pmf1 | pmf | Pmf object |
pmf2 | pmf | Pmf object |
@Returns: float probability
pmfProbGreater(pmf1, pmf2)
Probability that a value from pmf1 is greater than a value from pmf2.
@Params:
param | type | description |
---|
pmf1 | pmf | Pmf object |
pmf2 | pmf | Pmf object |
@Returns: float probability
pmfProbEqual(pmf1, pmf2)
Probability that a value from pmf1 equals a value from pmf2.
@Params:
param | type | description |
---|
pmf1 | pmf | Pmf object |
pmf2 | pmf | Pmf object |
@Returns: float probability
randomSum(dists)
Chooses a random value from each dist and returns the sum.
@Params:
param | type | description |
---|
dists | array | sequence of Pmf or Cdf objects |
@Returns: numerical sum
sampleSum(dists, n)
Draws a sample of sums from a list of distributions.
@Params:
param | type | description |
---|
dists | array | sequence of Pmf or Cdf objects |
n | number | sample size |
@Returns: new Pmf of sums
evalGaussianPdf(x, mu, sigma)
Computes the unnormalized PDF of the normal distribution.
@Params:
param | type | description |
---|
x | number | value |
mu | number | mean |
sigma | number | standard deviation |
@Returns: float probability density
makeGaussianPdf(mu, sigma, numSigmas, n = 201)
Makes a PMF discrete approx to a Gaussian distribution.
@Params:
param | type | description |
---|
mu | number | float mean |
sigma | number | float standard deviation |
numSigmas | number | how many sigmas to extend in each direction |
n | number | number of values in the Pmf |
@Returns: normalized Pmf
evalBinomialPmf(k, n, p)
Evaluates the binomial pmf.
@Returns: the probabily of k successes in n trials with probability p.
evalPoissonPmf(k, lam)
Computes the Poisson PMF.
@Params:
param | type | description |
---|
k | number | number of events |
lam | number | parameter lambda in events per unit time |
@Returns: float probability
makeJoint(pmf1, pmf2)
Joint distribution of values from pmf1 and pmf2.
@Params:
param | type | description |
---|
pmf1 | pmf | Pmf object |
pmf2 | pmf | Pmf object |
@Returns: Joint pmf of value pairs
makeHistFromList(t, name)
Makes a histogram from an unsorted sequence of values.
@Params:
param | type | description |
---|
t | array | sequence of numbers |
name | string | string name for this histogram |
@Returns: Hist object
makeHistFromDict(d, name)
Makes a histogram from a map from values to frequencies.
@Params:
param | type | description |
---|
d | object | map |
name | string | string name for this histogram |
@Returns: Hist object
makePmfFromList(t, name)
Makes a PMF from an unsorted sequence of values.
@Params:
param | type | description |
---|
t | array | sequence of numbers |
name | string | string name for this PMF |
@Returns: Pmf object
makePmfFromDict(d, name)
Makes a PMF from a map from values to probabilities.
@Params:
param | type | description |
---|
d | object | map |
name | string | string name for this PMF * @returns Pmf object |
makePmfFromItems(t, name)
Makes a PMF from a sequence of value-probability pairs
@Params:
param | type | description |
---|
t | array | sequence of value-probability pairs |
name | string | string name for this PMF * @returns Pmf object |
makePmfFromHist(hist, name)
Makes a normalized PMF from a Hist object.
@Params:
param | type | description |
---|
hist | hist | Hist object |
name | string | string name |
@Returns: Pmf object
makePmfFromCdf(cdf, name)
Makes a normalized Pmf from a Cdf object.
@Params:
param | type | description |
---|
cdf | cdf | Cdf object |
name | string | string name for the new Pmf |
@Returns: Pmf object
makeMixture(metapmf, name = 'mix')
Make a mixture distribution.
@Params:
param | type | description |
---|
metapmf | pmf | Pmf that maps from Pmfs to probs. |
name | string | string name for the new Pmf |
@Returns: Pmf object
makeUniformPmf(low, high, n)
Make a uniform Pmf.
@Params:
param | type | description |
---|
low | number | lowest value (inclusive) |
high | number | highest value (inclusize) |
n | number | number of values |
makeCdfFromItems(items, name = '')
Makes a cdf from an unsorted sequence of (value, frequency) pairs.
@Params:
param | type | description |
---|
items | array | unsorted sequence of (value, frequency) pairs |
name | string | string name for this CDF |
@Returns: cdf: list of (value, fraction) pairs
makeCdfFromDict(d, name)
Makes a CDF from a dictionary that maps values to frequencies.
@Params:
param | type | description |
---|
d | object | map |
name | string | string name for the data. |
@Returns: Cdf object
makeCdfFromHist(hist, name)
Makes a CDF from a Hist object.
@Params:
param | type | description |
---|
hist | hist | Hist object |
name | string | string name for the data. |
@Returns: Cdf object
makeCdfFromList(seq, name)
Creates a CDF from an unsorted sequence.
@Params:
param | type | description |
---|
seq | array | unsorted sequence of sortable values |
name | string | string name for the cdf |
@Returns: Cdf object
makeCdfFromPmf(pmf, name)
Makes a CDF from a Pmf object.
@Params:
param | type | description |
---|
pmf | pmf | Pmf object |
name | string | string name for the data. |
@Returns: Cdf object
makeSuiteFromDict(d, name)
Makes a suite from a map from values to probabilities.
@Params:
param | type | description |
---|
d | object | map |
name | string | string name for this suite |
@Returns: Suite object
makeSuiteFromList(t, name)
Makes a suite from an unsorted sequence of values.
@Params:
param | type | description |
---|
t | array | sequence of numbers |
name | string | string name for this suite |
makeSuiteFromHist(hist, name)
Makes a normalized suite from a Hist object.
@Params:
param | type | description |
---|
hist | hist | Hist object |
name | string | string name |
makeSuiteFromCdf(cdf, name)
Makes a normalized Suite from a Cdf object.
@Params:
param | type | description |
---|
cdf | cdf | Cdf object |
name | string | string name for the new Suite |
@Returns: Suite object
Q&A
How to reduce the precision loss caused by the calculation of float point number in javascript?
This library use decimal.js to handle the problem what calculation of float point number, in the same way, you can use it in this library:
import { Decimal } from 'think-bayes';
Decimal.add(0.1, 0.2).toNumber() === 0.3;