Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

think-bayes

Package Overview
Dependencies
Maintainers
1
Versions
10
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

think-bayes

An algorithm framework of probability and statistics for browser and Node.js environment.

  • 0.1.3-alpha.2
  • Source
  • npm
  • Socket score

Version published
Weekly downloads
14
Maintainers
1
Weekly downloads
 
Created
Source

think-bayes

npm npm npm

An algorithm collection of probability and statistics for browser and Node.js environment.

In progress...

适用于 浏览器Node.js 环境的概率统计算法集(非正式版本,功能亟待完善,努力 coding 中...)

Install

yarn add think-bayes # OR npm i --save think-bayes

Quickstart

Let us resolve the cookie problem by using the class Suite:

import { Suite } from 'think-bayes';

class Cookie extends Suite {
  mixes = {
    Bowl1: {
      vanilla: 0.75,
      chocolate: 0.25,
    },
    Bowl2: {
      vanilla: 0.5,
      chocolate: 0.5,
    },
  };

  likelihood(data, hypo) {
    const mix = this.mixes[hypo];
    const like = mix[data];
    return like;
  }
}

const hypos = ['Bowl1', 'Bowl2'];
const pmf = new Cookie(hypos);
pmf.update('vanilla');

const result = pmf.render();
console.log(result); // [ [ 'Bowl1', 0.6 ], [ 'Bowl2', 0.4 ] ]

// You can also print the result as a table
pmf.print();
// | Value | Prob |
// |-------|------|
// | Bowl1 | 0.6  |
// | Bowl2 | 0.4  |

In addition, here are some simple demos you can refer directly to resolve some classic problems of probability and statistics.

Algorithm Classes

This library provides some ES Classes following for calculations related to probability and statistics.

These classes can be imported by the same way following:

import { Pmf, Cdf, Pdf, Suite } from 'think-bayes';

DictWrapper(values, name)

An base class for generation an object contains a dictionary.

@Params:

paramtypedescription
valuesstringarray
namestringsequence of values

@Methods:

.initSequence(values)

Initializes with a sequence of equally-likely values.

@Params:

paramtypedescription
valuesarraysequence of values
.initMapping(values)

Initializes with a map from value to probability.

@Params:

paramtypedescription
valuesmapmap from value to probability
.initPmf(values)

Initializes with a Pmf.

@Params:

paramtypedescription
valuespmfPmf object
.initFailure(values)

Throw an error.

.values()

Gets an unsorted sequence of values.

Note: One source of confusion is that the keys of this

dictionary are the values of the Hist/Pmf, and the

values of the dictionary are frequencies/probabilities.

.items()

Gets an unsorted sequence of (value, freq/prob) pairs.

.set(value, prob)

Sets the freq/prob associated with the value x.

@Params:

paramtypedescription
valueanynumber value or case name
probnumbernumber freq or prob
.incr(x, term = 1)

Increments the freq/prob associated with the value x.

@Params:

paramtypedescription
xanynumber value or case name
termnumberhow much to increment by
.mult(x, factor = 1)

Scales the freq/prob associated with the value x.

@Params:

paramtypedescription
xanynumber value or case name
factornumberhow much to multiply by
.remove(value)

Removes a value.

Throws an exception if the value is not there.

@Params:

paramtypedescription
valueanyvalue to remove
.total()

Returns the total of the frequencies/probabilities in the map.

.maxLike()

Returns the largest frequency/probability in the map.

.copy(name)

Returns a copy.

Make a shallow copy of d. If you want a deep copy of d,

use one method to deep clone the whole object.

@Params:

paramtypedescription
namestringstring name for the new Hist

@Returns: new object

.scale(factor)

Multiplies the values by a factor.

@Params:

paramtypedescription
factornumberwhat to multiply by

@Returns: new object

.log(m)

Log transforms the probabilities.

Removes values with probability 0.

Normalizes so that the largest logprob is 0.

@Params:

paramtypedescription
mnumberhow much to shift the ps before exponentiating
.exp(m)

Exponentiates the probabilities.

If m is un-exist, normalizes so that the largest prob is 1.

@Params:

paramtypedescription
mnumberhow much to shift the ps before exponentiating
.getDict()

Gets the dictionary.

.setDict(d)

Sets the dictionary.

@Params:

paramtypedescription
dmapobject
.render()

Generates a sequence of points suitable for plotting.

@Returns: array of [sorted value sequence, freq/prob sequence]

.print()

Prints the values and freqs/probs in ascending order.

@Params:

paramtypedescription
indent

Pmf(values, name)

Represents a probability mass function.

Values can be any hashable type; probabilities are floating-point.

Pmfs are not necessarily normalized.

@Params:

paramtypedescription
valuesstringarray
namestringsequence of values

@Methods:

Important: This class inherits from DictWrapper, so you can use all methods of the parent class.

.prob(x, probDefault = 0)

Gets the probability associated with the value x.

@Params:

paramtypedescription
xanynumber value
probDefaultnumbervalue to return if the key is not there

@Returns: probability

.probs(xs)

Gets probabilities for a sequence of values.

@Params:

paramtypedescription
xsarraya sequence of values

@Returns: array of probabilities

.makeCdf(name)

Makes a cdf.

@Params:

paramtypedescription
namestringthe name for new cdf

@Returns: one new cdf

.probGreater(x)

Calculate the probability while the value is greater than x.

@Params:

paramtypedescription
xnumber

@Returns: probability

.probLess(x)

Calculate the probability while the value is less than x.

@Params:

paramtypedescription
xnumber

@Returns: probability

.normalize(fraction = 1.0)

Normalizes this PMF so the sum of all probs is fraction.

@Params:

paramtypedescription
fractionnumberwhat the total should be after normalization

@Returns: the total probability before normalizing

.random()

Chooses a random element from this PMF.

@Returns: float value from the pmf

.mean()

Computes the mean of a PMF.

@Returns: float mean

.var(miu)

Computes the variance of a PMF.

@Params:

paramtypedescription
miunumberthe point around which the variance is computed; if omitted, computes the mean

@Returns: float variance

.maximumLikelihood()

Returns the value with the highest probability.

@Returns: float probability

.credibleInterval(percentage = 90)

Computes the central credible interval.

If percentage=90, computes the 90% CI.

@Params:

paramtypedescription
percentagenumberfloat between 0 and 100

@Returns: sequence of two floats, low and high

.add(other)

Computes the Pmf of the sum of values drawn from self and other.

@Params:

paramtypedescription
othernumberpmf

@Returns: new pmf

.addPmf(other)

Computes the Pmf of the sum of values drawn from self and other.

@Params:

paramtypedescription
otherpmfanother pmf

@Returns: new pmf

.addConstant(other)

Computes the Pmf of the sum a constant and values from self.

@Params:

paramtypedescription
othernumbera number

@Returns: new pmf

.sub(other)

Computes the Pmf of the diff of values drawn from self and other.

@Params:

paramtypedescription
otherpmfanother pmf

@Returns: new pmf

.max(k)

Computes the CDF of the maximum of k selections from this dist.

@Params:

paramtypedescription
knumberint

@Returns: new cdf

Cdf(xs, ps, name)

Represents a cumulative distribution function.

@Params:

paramtypedescription
xsarraysequence of values
psarraysequence of probabilities
namestringstring used as a graph label

@Methods:

Important: This class inherits from DictWrapper, so you can use all methods of the parent class.

.copy(name)

Represents a cumulative distribution function.

@Params:

paramtypedescription
namestringstring name for the new cdf

@Returns: new cdf

.makePmf(name)

Makes a Pmf.

@Params:

paramtypedescription
namestringstring name for the new pmf

@Returns: new pmf

.values()

Returns a sorted list of values.

@Returns: array of values

.items()

Returns a sorted sequence of [value, probability] pairs.

@Returns: array of [value, probability] pairs

.append(x, p)

Add an (x, p) pair to the end of this CDF.

Note: this us normally used to build a CDF from scratch, not

to modify existing CDFs. It is up to the caller to make sure

that the result is a legal CDF.

@Params:

paramtypedescription
xanynumber value or case name
pnumbernumber freq or prob
.shift(term)

Adds a term to the xs.

@Params:

paramtypedescription
termnumberhow much to add

@Returns: another cdf

.scale(factor)

Multiplies the xs by a factor.

@Params:

paramtypedescription
factorwhat to multiply by

@Returns: another cdf

.prob(x)

Returns CDF(x), the probability that corresponds to value x.

@Params:

paramtypedescription
xnumbernumber

@Returns: float probability

.value(p)

Returns InverseCDF(p), the value that corresponds to probability p.

@Params:

paramtypedescription
pnumbernumber in the range [0, 1]

@Returns: number value

.percentile(p)

Returns the value that corresponds to percentile p.

@Params:

paramtypedescription
pnumbernumber in the range [0, 100]

@Returns: number value

.random()

Chooses a random value from this distribution.

@Returns: number value

.sample(n)

Generates a random sample from this distribution.

@Params:

paramtypedescription
nnumberint length of the sample

@Returns: array of random values

.mean()

Computes the mean of a CDF.

@Returns: float mean

.credibleInterval(percentage = 90)

Computes the central credible interval.

If percentage=90, computes the 90% CI.

@Params:

paramtypedescription
percentagenumberfloat between 0 and 100

@Returns: sequence of two floats, low and high

.render()

Generates a sequence of points suitable for plotting.

An empirical CDF is a step function; linear interpolation can be misleading.

@Returns: array of points

.max(k)

Computes the CDF of the maximum of k selections from this dist.

@Params:

paramtypedescription
knumberint

@Returns: new Cdf

Pdf()

Represents a probability density function (PDF).

@Methods:

.density(x)

Evaluates this pdf at x.

This method needs implement by children class, if not there is an UnimplementedMethodException would be throw when the method is called

@Params:

paramtypedescription
xnumbernumber

@Returns: float probability density

.makePmf(xs, name)

Makes a discrete version of this pdf, evaluated at xs.

@Params:

paramtypedescription
xsstringarray

@Returns: new pmf

Suite(values, name)

Represents a suite of hypotheses and their probabilities.

@Params:

paramtypedescription
valuesstringarray
namestringsequence of values

@Methods:

Important: This class inherits from Pmf, so you can use all methods of the parent class.

.update(data)

Updates each hypothesis based on the data.

@Params:

paramtypedescription
dataanyany representation of the data

@Returns: the normalizing constant

.logUpdate(data)

Updates a suite of hypotheses based on new data.

Modifies the suite directly; if you want to keep the original, make a copy.

Note: unlike Update, LogUpdate does not normalize.

@Params:

paramtypedescription
anyanyrepresentation of the data
.updateSet(dataset)

Updates each hypothesis based on the dataset.

This is more efficient than calling Update repeatedly because

it waits until the end to Normalize.

Modifies the suite directly; if you want to keep the original, make a copy.

@Params:

paramtypedescription
datasetarrayset

@Returns: the normalizing constant

.logUpdateSet(dataset)

Updates each hypothesis based on the dataset.

Modifies the suite directly; if you want to keep the original, make a copy.

@Params:

paramtypedescription
datasetarrayset
.likelihood(data, hypo)

Computes the likelihood of the data under the hypothesis.

This method needs implement by children class

if not there is an UnimplementedMethodException would be throw

@Params:

paramtypedescription
dataanysome representation of the data
hypoanysome representation of the hypothesis

@Returns: likelihood

.logLikelihood(data, hypo)

Computes the log likelihood of the data under the hypothesis.

This method needs implement by children class

if not there is an UnimplementedMethodException would be throw

@Params:

paramtypedescription
dataanysome representation of the data
hypoanysome representation of the hypothesis

@Returns: likelihood

.makeOdds()

Transforms from probabilities to odds.

Values with prob=0 are removed.

.makeProbs()

Transforms from odds to probabilities.

Hist(values, name)

Represents a histogram, which is a map from values to frequencies.

Values can be any hashable type; frequencies are integer counters.

@Params:

paramtypedescription
valuesstringarray
namestringsequence of values

@Methods:

Important: This class inherits from DictWrapper, so you can use all methods of the parent class.

.freq(x)

Gets the frequency associated with the value x.

@Params:

paramtypedescription
xanynumber value

@Returns: int frequency

.freqs(xs)

Gets frequencies for a sequence of values.

.isSubset(other)

Checks whether the values in this histogram are a subset of

the values in the given histogram.

.subtract(other)

Subtracts the values in the given histogram from this histogram.

Interpolater(xs, ys)

Represents a mapping between sorted sequences; performs linear interp.

@Params:

paramtypedescription
xsarraysorted list
ysarraysorted list

@Methods:

.lookup(x)

Looks up x and returns the corresponding value of y.

.reverse(x)

Looks up y and returns the corresponding value of x.

Joint(values, name)

Represents a joint distribution.

The values are sequences (usually tuples)

@Params:

paramtypedescription
valuesstringarray
namestringsequence of values

@Methods:

Important: This class inherits from Pmf, so you can use all methods of the parent class.

.marginal(i, name)

Gets the marginal distribution of the indicated variable.

@Params:

paramtypedescription
inumberindex of the variable we want

@Returns: Pmf

.conditional(i, j, val, name)

Gets the conditional distribution of the indicated variable.

Distribution of vs[i], conditioned on vs[j] = val.

@Params:

paramtypedescription
inumberindex of the variable we want
jnumberwhich variable is conditioned on
valthe value the jth variable has to have

@Returns: Pmf

.maxLikeInterval(percentage = 90)

Returns the maximum-likelihood credible interval.

If percentage=90, computes a 90% CI containing the values

with the highest likelihoods.

@Params:

paramtypedescription
percentagenumberfloat between 0 and 100

@Returns: list of values from the suite

GaussianPdf()

Represents the PDF of a Gaussian distribution.

@Methods:

Important: This class inherits from Pdf, so you can use all methods of the parent class.

.constructor(mu, sigma)

Constructs a Gaussian Pdf with given mu and sigma.

@Params:

paramtypedescription
munumbermean
sigmanumberstandard deviation
.density(x)

Evaluates this Pdf at x.

@Returns: float probability density

GaussianKde()

TODO: implemente this class.

EstimatedPdf(sample)

Represents a PDF estimated by KDE.

Estimates the density function based on a sample.

@Params:

paramtypedescription
samplearraysequence of data

@Methods:

Important: This class inherits from Pdf, so you can use all methods of the parent class.

.density(x)

Evaluates this Pdf at x.

@Returns: float probability density

Utility Functions

This library provides some Utility Functions following for calculations related to probability and statistics.

These functions can be imported by the same way following:

import { odds, probability, percentile } from 'think-bayes/helpers';
odds(p)

Computes odds for a given probability.

Example: p=0.75 means 75 for and 25 against, or 3:1 odds in favor.

Note: when p=1, the formula for odds divides by zero, which is

normally undefined. But I think it is reasonable to define Odds(1)

to be infinity, so that's what this function does.

@Params:

paramtypedescription
pnumberfloat 0~1

@Returns: float odds

probability(o)

Computes the probability corresponding to given odds.

Example: o=2 means 2:1 odds in favor, or 2/3 probability

@Params:

paramtypedescription
onumberfloat odds, strictly positive

@Returns: float probability

probability2(yes, no)

Computes the probability corresponding to given odds.

Example: yes=2, no=1 means 2:1 odds in favor, or 2/3 probability.

@Params:

paramtypedescription
yesnumberint or float odds in favor
nonumberint or float odds in favor
percentile(pmf, percentage)

Computes a percentile of a given Pmf.

@Params:

paramtypedescription
pmfpmf
percentagenumberfloat 0-100
credibleInterval(pmf, percentage = 90)

Computes a credible interval for a given distribution.

If percentage=90, computes the 90% CI.

@Params:

paramtypedescription
pmfpmfPmf object representing a posterior distribution
percentagenumberfloat between 0 and 100

@Returns: sequence of two floats, low and high

pmfProbLess(pmf1, pmf2)

Probability that a value from pmf1 is less than a value from pmf2.

@Params:

paramtypedescription
pmf1pmfPmf object
pmf2pmfPmf object

@Returns: float probability

pmfProbGreater(pmf1, pmf2)

Probability that a value from pmf1 is greater than a value from pmf2.

@Params:

paramtypedescription
pmf1pmfPmf object
pmf2pmfPmf object

@Returns: float probability

pmfProbEqual(pmf1, pmf2)

Probability that a value from pmf1 equals a value from pmf2.

@Params:

paramtypedescription
pmf1pmfPmf object
pmf2pmfPmf object

@Returns: float probability

randomSum(dists)

Chooses a random value from each dist and returns the sum.

@Params:

paramtypedescription
distsarraysequence of Pmf or Cdf objects

@Returns: numerical sum

sampleSum(dists, n)

Draws a sample of sums from a list of distributions.

@Params:

paramtypedescription
distsarraysequence of Pmf or Cdf objects
nnumbersample size

@Returns: new Pmf of sums

evalGaussianPdf(x, mu, sigma)

Computes the unnormalized PDF of the normal distribution.

@Params:

paramtypedescription
xnumbervalue
munumbermean
sigmanumberstandard deviation

@Returns: float probability density

makeGaussianPdf(mu, sigma, numSigmas, n = 201)

Makes a PMF discrete approx to a Gaussian distribution.

@Params:

paramtypedescription
munumberfloat mean
sigmanumberfloat standard deviation
numSigmasnumberhow many sigmas to extend in each direction
nnumbernumber of values in the Pmf

@Returns: normalized Pmf

evalBinomialPmf(k, n, p)

Evaluates the binomial pmf.

@Returns: the probabily of k successes in n trials with probability p.

evalPoissonPmf(k, lam)

Computes the Poisson PMF.

@Params:

paramtypedescription
knumbernumber of events
lamnumberparameter lambda in events per unit time

@Returns: float probability

Q&A

How to reduce the precision loss caused by the calculation of float point number in javascript?

This library use decimal.js to handle the problem what calculation of float point number, in the same way, you can use it in this library:

import { Decimal } from 'think-bayes';

Decimal.add(0.1, 0.2).toNumber() === 0.3; // true

Keywords

FAQs

Package last updated on 30 Jan 2020

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc