Security News
JSR Working Group Kicks Off with Ambitious Roadmap and Plans for Open Governance
At its inaugural meeting, the JSR Working Group outlined plans for an open governance model and a roadmap to enhance JavaScript package management.
uglify-js
Advanced tools
The uglify-js npm package is a JavaScript parser, minifier, compressor, and beautifier toolkit. It is commonly used to reduce the size of JavaScript files by removing unnecessary characters (like whitespace, comments, etc.) without changing their functionality. This helps in decreasing the load time and bandwidth usage of web applications.
Minification
Minification is the process of removing unnecessary characters and whitespace from source code without changing its functionality. The code sample demonstrates how to read a JavaScript file, minify it using uglify-js, and then write the minified code to a new file.
const uglifyJS = require('uglify-js');
const fs = require('fs');
const code = fs.readFileSync('example.js', 'utf8');
const minifiedCode = uglifyJS.minify(code).code;
fs.writeFileSync('example.min.js', minifiedCode);
Compression
Compression is a form of optimization that reduces code size by performing various transformations, such as removing dead code or simplifying expressions. The code sample shows how to use uglify-js to compress a JavaScript file by removing console statements and then writing the compressed code to a new file.
const uglifyJS = require('uglify-js');
const fs = require('fs');
const options = {
compress: {
drop_console: true
}
};
const code = fs.readFileSync('example.js', 'utf8');
const compressedCode = uglifyJS.minify(code, options).code;
fs.writeFileSync('example.compressed.js', compressedCode);
Mangling
Mangling is the process of shortening variable and function names to reduce file size and potentially obfuscate code. The code sample illustrates how to use uglify-js to mangle a JavaScript file and then save the mangled code to a new file.
const uglifyJS = require('uglify-js');
const fs = require('fs');
const options = {
mangle: true
};
const code = fs.readFileSync('example.js', 'utf8');
const mangledCode = uglifyJS.minify(code, options).code;
fs.writeFileSync('example.mangled.js', mangledCode);
Beautification
Beautification is the process of reformatting minified or obfuscated code into a more readable and maintainable format. The code sample demonstrates how to use uglify-js to beautify a JavaScript file and then write the beautified code to a new file.
const uglifyJS = require('uglify-js');
const fs = require('fs');
const options = {
output: {
beautify: true
}
};
const code = fs.readFileSync('example.js', 'utf8');
const beautifiedCode = uglifyJS.minify(code, options).code;
fs.writeFileSync('example.beautified.js', beautifiedCode);
Terser is a modern fork of uglify-js that supports the ES6+ syntax. It offers similar functionalities such as minification, compression, and mangling. Terser is often preferred for projects using modern JavaScript syntax.
Google Closure Compiler is a JavaScript optimizing compiler that provides advanced optimizations including dead code removal, function inlining, and variable renaming. It is known for its aggressive optimization techniques and can produce smaller output files compared to uglify-js, but it may require more configuration.
Babel-minify is a minifier based on the Babel toolchain. It leverages Babel's understanding of the latest JavaScript syntax to provide minification and compression. It is suitable for projects that are already using Babel and need to support newer JavaScript features.
Esbuild is an extremely fast JavaScript bundler and minifier. It is written in Go and focuses on speed, boasting compile times significantly faster than other bundlers and minifiers. Esbuild also supports modern JavaScript and TypeScript out of the box.
UglifyJS is a JavaScript parser, minifier, compressor or beautifier toolkit.
This page documents the command line utility. For API and internals documentation see my website. There's also an in-browser online demo (for Firefox, Chrome and probably Safari).
From NPM:
npm install uglify-js
From Git:
git clone git://github.com/mishoo/UglifyJS2.git
cd UglifyJS2
npm link .
uglifyjs [input files] [options]
UglifyJS2 can take multiple input files. It's recommended that you pass the input files first, then pass the options. UglifyJS will parse input files in sequence and apply any compression options. The files are parsed in the same global scope, that is, a reference from a file to some variable/function declared in another file will be matched properly.
If you want to read from STDIN instead, pass a single dash instead of input files.
The available options are:
--source-map Specify an output file where to generate source map.
[string]
--source-map-root The path to the original source to be included in the
source map. [string]
--in-source-map Input source map, useful if you're compressing JS that was
generated from some other original code.
-p, --prefix Skip prefix for original filenames that appear in source
maps. For example -p 3 will drop 3 directories from file
names and ensure they are relative paths.
-o, --output Output file (default STDOUT).
-b, --beautify Beautify output/specify output options. [string]
-m, --mangle Mangle names/pass mangler options. [string]
-r, --reserved Reserved names to exclude from mangling.
-c, --compress Enable compressor/pass compressor options. Pass options
like -c hoist_vars=false,if_return=false. Use -c with no
argument to use the default compression options. [string]
-d, --define Global definitions [string]
--comments Preserve copyright comments in the output. By default this
works like Google Closure, keeping JSDoc-style comments
that contain "@license" or "@preserve". You can optionally
pass one of the following arguments to this flag:
- "all" to keep all comments
- a valid JS regexp (needs to start with a slash) to keep
only comments that match.
Note that currently not *all* comments can be kept when
compression is on, because of dead code removal or
cascading statements into sequences. [string]
--stats Display operations run time on STDERR. [boolean]
--acorn Use Acorn for parsing. [boolean]
--spidermonkey Assume input fles are SpiderMonkey AST format (as JSON).
[boolean]
--self Build itself (UglifyJS2) as a library (implies
--wrap=UglifyJS --export-all) [boolean]
--wrap Embed everything in a big function, making the “exports”
and “global” variables available. You need to pass an
argument to this option to specify the name that your
module will take when included in, say, a browser.
[string]
--export-all Only used when --wrap, this tells UglifyJS to add code to
automatically export all globals. [boolean]
-v, --verbose Verbose [boolean]
Specify --output
(-o
) to declare the output file. Otherwise the output
goes to STDOUT.
UglifyJS2 can generate a source map file, which is highly useful for
debugging your compressed JavaScript. To get a source map, pass
--source-map output.js.map
(full path to the file where you want the
source map dumped).
Additionally you might need --source-map-root
to pass the URL where the
original files can be found. In case you are passing full paths to input
files to UglifyJS, you can use --prefix
(-p
) to specify the number of
directories to drop from the path prefix when declaring files in the source
map.
For example:
uglifyjs /home/doe/work/foo/src/js/file1.js \
/home/doe/work/foo/src/js/file2.js \
-o foo.min.js \
--source-map foo.min.js.map \
--source-map-root http://foo.com/src \
-p 5 -c -m
The above will compress and mangle file1.js
and file2.js
, will drop the
output in foo.min.js
and the source map in foo.min.js.map
. The source
mapping will refer to http://foo.com/src/js/file1.js
and
http://foo.com/src/js/file2.js
(in fact it will list http://foo.com/src
as the source map root, and the original files as js/file1.js
and
js/file2.js
).
When you're compressing JS code that was output by a compiler such as CoffeeScript, mapping to the JS code won't be too helpful. Instead, you'd like to map back to the original code (i.e. CoffeeScript). UglifyJS has an option to take an input source map. Assuming you have a mapping from CoffeeScript → compiled JS, UglifyJS can generate a map from CoffeeScript → compressed JS by mapping every token in the compiled JS to its original location.
To use this feature you need to pass --in-source-map /path/to/input/source.map
. Normally the input source map should also point
to the file containing the generated JS, so if that's correct you can omit
input files from the command line.
To enable the mangler you need to pass --mangle
(-m
). Optionally you
can pass -m sort
(we'll possibly have other flags in the future) in order
to assign shorter names to most frequently used variables. This saves a few
hundred bytes on jQuery before gzip, but the output is bigger after gzip
(and seems to happen for other libraries I tried it on) therefore it's not
enabled by default.
When mangling is enabled but you want to prevent certain names from being
mangled, you can declare those names with --reserved
(-r
) — pass a
comma-separated list of names. For example:
uglifyjs ... -m -r '$,require,exports'
to prevent the require
, exports
and $
names from being changed.
You need to pass --compress
(-c
) to enable the compressor. Optionally
you can pass a comma-separated list of options. Options are in the form
foo=bar
, or just foo
(the latter implies a boolean option that you want
to set true
; it's effectively a shortcut for foo=true
).
The defaults should be tuned for maximum compression on most code. Here are
the available options (all are true
by default, except hoist_vars
):
sequences
-- join consecutive simple statements using the comma operatorproperties
-- rewrite property access using the dot notation, for
example foo["bar"] → foo.bar
dead-code
-- remove unreachable codedrop-debugger
-- remove debugger;
statementsunsafe
-- apply "unsafe" transformations (discussion below)conditionals
-- apply optimizations for if
-s and conditional
expressionscomparisons
-- apply certain optimizations to binary nodes, for example:
!(a <= b) → a > b
(only when unsafe
), attempts to negate binary nodes,
e.g. a = !b && !c && !d && !e → a=!(b||c||d||e)
etc.evaluate
-- attempt to evaluate constant expressionsbooleans
-- various optimizations for boolean context, for example !!a ? b : c → a ? b : c
loops
-- optimizations for do
, while
and for
loops when we can
statically determine the conditionunused
-- drop unreferenced functions and variableshoist-funs
-- hoist function declarationshoist-vars
-- hoist var
declarations (this is false
by default
because it seems to increase the size of the output in general)if-return
-- optimizations for if/return and if/continuejoin-vars
-- join consecutive var
statementscascade
-- small optimization for sequences, transform x, x
into x
and x = something(), x
into x = something()
warnings
-- display warnings when dropping unreachable code or unused
declarations etc.You can use the --define
(-d
) switch in order to declare global
variables that UglifyJS will assume to be constants (unless defined in
scope). For example if you pass --define DEBUG=false
then, coupled with
dead code removal UglifyJS will discard the following from the output:
if (DEBUG) {
console.log("debug stuff");
}
UglifyJS will warn about the condition being always false and about dropping
unreachable code; for now there is no option to turn off only this specific
warning, you can pass warnings=false
to turn off all warnings.
Another way of doing that is to declare your globals as constants in a
separate file and include it into the build. For example you can have a
build/defines.js
file with the following:
const DEBUG = false;
const PRODUCTION = true;
// etc.
and build your code like this:
uglifyjs build/defines.js js/foo.js js/bar.js... -c
UglifyJS will notice the constants and, since they cannot be altered, it
will evaluate references to them to the value itself and drop unreachable
code as usual. The possible downside of this approach is that the build
will contain the const
declarations.
The code generator tries to output shortest code possible by default. In
case you want beautified output, pass --beautify
(-b
). Optionally you
can pass additional arguments that control the code output:
beautify
(default true
) -- whether to actually beautify the output.
Passing -b
will set this to true, but you might need to pass -b
even
when you want to generate minified code, in order to specify additional
arguments, so you can use -b beautify=false
to override it.indent-level
(default 4)indent-start
(default 0) -- prefix all lines by that many spacesquote-keys
(default false
) -- pass true
to quote all keys in literal
objectsspace-colon
(default true
) -- insert a space after the colon signsascii-only
(default false
) -- escape Unicode characters in strings and
regexpsinline-script
(default false
) -- escape the slash in occurrences of
</script
in stringswidth
(default 80) -- only takes effect when beautification is on, this
specifies an (orientative) line width that the beautifier will try to
obey. It refers to the width of the line text (excluding indentation).
It doesn't work very well currently, but it does make the code generated
by UglifyJS more readable.max-line-len
(default 32000) -- maximum line length (for uglified code)ie-proof
(default true
) -- generate “IE-proof” code (for now this
means add brackets around the do/while in code like this: if (foo) do something(); while (bar); else ...
.bracketize
(default false
) -- always insert brackets in if
, for
,
do
, while
or with
statements, even if their body is a single
statement.semicolons
(default true
) -- separate statements with semicolons. If
you pass false
then whenever possible we will use a newline instead of a
semicolon, leading to more readable output of uglified code (size before
gzip could be smaller; size after gzip insignificantly larger).You can pass --comments
to retain certain comments in the output. By
default it will keep JSDoc-style comments that contain "@preserve",
"@license" or "@cc_on" (conditional compilation for IE). You can pass
--comments all
to keep all the comments, or a valid JavaScript regexp to
keep only comments that match this regexp. For example --comments '/foo|bar/'
will keep only comments that contain "foo" or "bar".
Note, however, that there might be situations where comments are lost. For example:
function f() {
/** @preserve Foo Bar */
function g() {
// this function is never called
}
return something();
}
Even though it has "@preserve", the comment will be lost because the inner
function g
(which is the AST node to which the comment is attached to) is
discarded by the compressor as not referenced.
The safest comments where to place copyright information (or other info that needs to be kept in the output) are comments attached to toplevel nodes.
UglifyJS2 has its own abstract syntax tree format; for practical reasons we can't easily change to using the SpiderMonkey AST internally. However, UglifyJS now has a converter which can import a SpiderMonkey AST.
For example Acorn is a super-fast parser that produces a SpiderMonkey AST. It has a small CLI utility that parses one file and dumps the AST in JSON on the standard output. To use UglifyJS to mangle and compress that:
acorn file.js | uglifyjs --spidermonkey -m -c
The --spidermonkey
option tells UglifyJS that all input files are not
JavaScript, but JS code described in SpiderMonkey AST in JSON. Therefore we
don't use our own parser in this case, but just transform that AST into our
internal AST.
More for fun, I added the --acorn
option which will use Acorn to do all
the parsing. If you pass this option, UglifyJS will require("acorn")
.
Acorn is really fast (e.g. 250ms instead of 380ms on some 650K code), but converting the SpiderMonkey tree that Acorn produces takes another 150ms so in total it's a bit more than just using UglifyJS's own parser.
Assuming installation via NPM, you can load UglifyJS in your application like this:
var UglifyJS = require("uglify-js");
It exports a lot of names, but I'll discuss here the basics that are needed for parsing, mangling and compressing a piece of code. The sequence is (1) parse, (2) compress, (3) mangle, (4) generate output code.
There's a single toplevel function which combines all the steps. If you
don't need additional customization, you might want to go with minify
.
Example:
// see "fromString" below if you need to pass code instead of file name
var result = UglifyJS.minify("/path/to/file.js");
console.log(result.code); // minified output
You can also compress multiple files:
var result = UglifyJS.minify([ "file1.js", "file2.js", "file3.js" ]);
console.log(result.code);
To generate a source map:
var result = UglifyJS.minify([ "file1.js", "file2.js", "file3.js" ], {
outSourceMap: "out.js.map"
});
console.log(result.code); // minified output
console.log(result.map);
Note that the source map is not saved in a file, it's just returned in
result.map
. The value passed for outSourceMap
is only used to set the
file
attribute in the source map (see the spec).
You can also specify sourceRoot property to be included in source map:
var result = UglifyJS.minify([ "file1.js", "file2.js", "file3.js" ], {
outSourceMap: "out.js.map",
sourceRoot: "http://example.com/src"
});
If you're compressing compiled JavaScript and have a source map for it, you
can use the inSourceMap
argument:
var result = UglifyJS.minify("compiled.js", {
inSourceMap: "compiled.js.map",
outSourceMap: "minified.js.map"
});
// same as before, it returns `code` and `map`
The inSourceMap
is only used if you also request outSourceMap
(it makes
no sense otherwise).
Other options:
warnings
(default false
) — pass true
to display compressor warnings.fromString
(default false
) — if you pass true
then you can pass
JavaScript source code, rather than file names.We could add more options to UglifyJS.minify
— if you need additional
functionality please suggest!
Following there's more detailed API info, in case the minify
function is
too simple for your needs.
var toplevel_ast = UglifyJS.parse(code, options);
options
is optional and if present it must be an object. The following
properties are available:
strict
— disable automatic semicolon insertion and support for trailing
comma in arrays and objectsfilename
— the name of the file where this code is coming fromtoplevel
— a toplevel
node (as returned by a previous invocation of
parse
)The last two options are useful when you'd like to minify multiple files and get a single file as the output and a proper source map. Our CLI tool does something like this:
var toplevel = null;
files.forEach(function(file){
var code = fs.readFileSync(file);
toplevel = UglifyJS.parse(code, {
filename: file,
toplevel: toplevel
});
});
After this, we have in toplevel
a big AST containing all our files, with
each token having proper information about where it came from.
UglifyJS contains a scope analyzer that you need to call manually before
compressing or mangling. Basically it augments various nodes in the AST
with information about where is a name defined, how many times is a name
referenced, if it is a global or not, if a function is using eval
or the
with
statement etc. I will discuss this some place else, for now what's
important to know is that you need to call the following before doing
anything with the tree:
toplevel.figure_out_scope()
Like this:
var compressor = UglifyJS.Compressor(options);
var compressed_ast = toplevel.transform(compressor);
The options
can be missing. Available options are discussed above in
“Compressor options”. Defaults should lead to best compression in most
scripts.
The compressor is destructive, so don't rely that toplevel
remains the
original tree.
After compression it is a good idea to call again figure_out_scope
(since
the compressor might drop unused variables / unreachable code and this might
change the number of identifiers or their position). Optionally, you can
call a trick that helps after Gzip (counting character frequency in
non-mangleable words). Example:
compressed_ast.figure_out_scope();
compressed_ast.compute_char_frequency();
compressed_ast.mangle_names();
AST nodes have a print
method that takes an output stream. Essentially,
to generate code you do this:
var stream = UglifyJS.OutputStream(options);
compressed_ast.print(stream);
var code = stream.toString(); // this is your minified code
or, for a shortcut you can do:
var code = compressed_ast.print_to_string(options);
As usual, options
is optional. The output stream accepts a lot of otions,
most of them documented above in section “Beautifier options”. The two
which we care about here are source_map
and comments
.
In order to keep certain comments in the output you need to pass the
comments
option. Pass a RegExp or a function. If you pass a RegExp, only
those comments whose body matches the regexp will be kept. Note that body
means without the initial //
or /*
. If you pass a function, it will be
called for every comment in the tree and will receive two arguments: the
node that the comment is attached to, and the comment token itself.
The comment token has these properties:
type
: "comment1" for single-line comments or "comment2" for multi-line
commentsvalue
: the comment bodypos
and endpos
: the start/end positions (zero-based indexes) in the
original code where this comment appearsline
and col
: the line and column where this comment appears in the
original codefile
— the file name of the original filenlb
— true if there was a newline before this comment in the original
code, or if this comment contains a newline.Your function should return true
to keep the comment, or a falsy value
otherwise.
You need to pass the source_map
argument when calling print
. It needs
to be a SourceMap
object (which is a thin wrapper on top of the
source-map library).
Example:
var source_map = UglifyJS.SourceMap(source_map_options);
var stream = UglifyJS.OutputStream({
...
source_map: source_map
});
compressed_ast.print(stream);
var code = stream.toString();
var map = source_map.toString(); // json output for your source map
The source_map_options
(optional) can contain the following properties:
file
: the name of the JavaScript output file that this mapping refers to
root
: the sourceRoot
property (see the spec)
orig
: the "original source map", handy when you compress generated JS
and want to map the minified output back to the original code where it
came from. It can be simply a string in JSON, or a JSON object containing
the original source map.
FAQs
JavaScript parser, mangler/compressor and beautifier toolkit
We found that uglify-js demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 3 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
At its inaugural meeting, the JSR Working Group outlined plans for an open governance model and a roadmap to enhance JavaScript package management.
Security News
Research
An advanced npm supply chain attack is leveraging Ethereum smart contracts for decentralized, persistent malware control, evading traditional defenses.
Security News
Research
Attackers are impersonating Sindre Sorhus on npm with a fake 'chalk-node' package containing a malicious backdoor to compromise developers' projects.