Zod
✨ https://zod.dev ✨
TypeScript-first schema validation with static type inference
These docs have been translated into Chinese.
Table of contents
Introduction
Zod is a TypeScript-first schema declaration and validation library. I'm using the term "schema" to broadly refer to any data type, from a simple string
to a complex nested object.
Zod is designed to be as developer-friendly as possible. The goal is to eliminate duplicative type declarations. With Zod, you declare a validator once and Zod will automatically infer the static TypeScript type. It's easy to compose simpler types into complex data structures.
Some other great aspects:
- Zero dependencies
- Works in Node.js and all modern browsers
- Tiny: 8kb minified + zipped
- Immutable: methods (e.g.
.optional()
) return a new instance - Concise, chainable interface
- Functional approach: parse, don't validate
- Works with plain JavaScript too! You don't need to use TypeScript.
Sponsorship at any level is appreciated and encouraged. For individual developers, consider the Cup of Coffee tier. If you built a paid product using Zod, consider one of the podium tiers.
Gold
Silver
Bronze
Ecosystem
There are a growing number of tools that are built atop or support Zod natively! If you've built a tool or library on top of Zod, tell me about it on Twitter or start a Discussion. I'll add it below and tweet it out.
Resources
API libraries
tRPC
: Build end-to-end typesafe APIs without GraphQL.@anatine/zod-nestjs
: Helper methods for using Zod in a NestJS project.zod-endpoints
: Contract-first strictly typed endpoints with Zod. OpenAPI compatible.domain-functions
: Decouple your business logic from your framework using composable functions. With first-class type inference from end to end powered by Zod schemas.@zodios/core
: A typescript API client with runtime and compile time validation backed by axios and zod.express-zod-api
: Build Express-based APIs with I/O schema validation and custom middlewares.
Form integrations
react-hook-form
: A first-party Zod resolver for React Hook Form.zod-validation-error
: Generate user-friendly error messages from ZodError
s.zod-formik-adapter
: A community-maintained Formik adapter for Zod.react-zorm
: Standalone <form>
generation and validation for React using Zod.zodix
: Zod utilities for FormData and URLSearchParams in Remix loaders and actions.remix-params-helper
: Simplify integration of Zod with standard URLSearchParams and FormData for Remix apps.formik-validator-zod
: Formik-compliant validator library that simplifies using Zod with Formik.zod-i18n-map
: Useful for translating Zod error messages.@modular-forms/solid
: Modular form library for SolidJS that supports Zod for validation.houseform
: A React form library that uses Zod for validation.
Zod to X
X to Zod
Mocking
Powered by Zod
slonik
: Node.js Postgres client with strong Zod integration.soly
: Create CLI applications with zod.zod-xlsx
: A xlsx based resource validator using Zod schemas.znv
: Type-safe environment parsing and validation for Node.js with Zod schemas.
Utilities for Zod
zod_utilz
: Framework agnostic utilities for Zod.
Installation
Requirements
From npm
(Node/Bun)
npm install zod
yarn add zod
bun add zod
pnpm add zod
From deno.land/x
(Deno)
Unlike Node, Deno relies on direct URL imports instead of a package manager like NPM. Zod is available on deno.land/x. The latest version can be imported like so:
import { z } from "https://deno.land/x/zod/mod.ts";
You can also specify a particular version:
import { z } from "https://deno.land/x/zod@v3.16.1/mod.ts";
The rest of this README assumes you are using npm and importing directly from the "zod"
package.
Basic usage
Creating a simple string schema
import { z } from "zod";
const mySchema = z.string();
mySchema.parse("tuna");
mySchema.parse(12);
mySchema.safeParse("tuna");
mySchema.safeParse(12);
Creating an object schema
import { z } from "zod";
const User = z.object({
username: z.string(),
});
User.parse({ username: "Ludwig" });
type User = z.infer<typeof User>;
Primitives
import { z } from "zod";
z.string();
z.number();
z.bigint();
z.boolean();
z.date();
z.symbol();
z.undefined();
z.null();
z.void();
z.any();
z.unknown();
z.never();
Coercion for primitives
Zod now provides a more convenient way to coerce primitive values.
const schema = z.coerce.string();
schema.parse("tuna");
schema.parse(12);
schema.parse(true);
During the parsing step, the input is passed through the String()
function, which is a JavaScript built-in for coercing data into strings. Note that the returned schema is a ZodString
instance so you can use all string methods.
z.coerce.string().email().min(5);
All primitive types support coercion.
z.coerce.string();
z.coerce.number();
z.coerce.boolean();
z.coerce.bigint();
z.coerce.date();
Boolean coercion
Zod's boolean coercion is very simple! It passes the value into the Boolean(value)
function, that's it. Any truthy value will resolve to true
, any falsy value will resolve to false
.
z.coerce.boolean().parse("tuna");
z.coerce.boolean().parse("true");
z.coerce.boolean().parse("false");
z.coerce.boolean().parse(1);
z.coerce.boolean().parse([]);
z.coerce.boolean().parse(0);
z.coerce.boolean().parse(undefined);
z.coerce.boolean().parse(null);
Literals
Literal schemas represent a literal type, like "hello world"
or 5
.
const tuna = z.literal("tuna");
const twelve = z.literal(12);
const twobig = z.literal(2n);
const tru = z.literal(true);
const terrificSymbol = Symbol("terrific");
const terrific = z.literal(terrificSymbol);
tuna.value;
Currently there is no support for Date literals in Zod. If you have a use case for this feature, please file an issue.
Strings
Zod includes a handful of string-specific validations.
z.string().max(5);
z.string().min(5);
z.string().length(5);
z.string().email();
z.string().url();
z.string().emoji();
z.string().uuid();
z.string().cuid();
z.string().cuid2();
z.string().ulid();
z.string().regex(regex);
z.string().includes(string);
z.string().startsWith(string);
z.string().endsWith(string);
z.string().datetime();
z.string().ip();
z.string().trim();
z.string().toLowerCase();
z.string().toUpperCase();
Check out validator.js for a bunch of other useful string validation functions that can be used in conjunction with Refinements.
You can customize some common error messages when creating a string schema.
const name = z.string({
required_error: "Name is required",
invalid_type_error: "Name must be a string",
});
When using validation methods, you can pass in an additional argument to provide a custom error message.
z.string().min(5, { message: "Must be 5 or more characters long" });
z.string().max(5, { message: "Must be 5 or fewer characters long" });
z.string().length(5, { message: "Must be exactly 5 characters long" });
z.string().email({ message: "Invalid email address" });
z.string().url({ message: "Invalid url" });
z.string().emoji({ message: "Contains non-emoji characters" });
z.string().uuid({ message: "Invalid UUID" });
z.string().includes("tuna", { message: "Must include tuna" });
z.string().startsWith("https://", { message: "Must provide secure URL" });
z.string().endsWith(".com", { message: "Only .com domains allowed" });
z.string().datetime({ message: "Invalid datetime string! Must be UTC." });
z.string().ip({ message: "Invalid IP address" });
ISO datetimes
The z.string().datetime()
method defaults to UTC validation: no timezone offsets with arbitrary sub-second decimal precision.
const datetime = z.string().datetime();
datetime.parse("2020-01-01T00:00:00Z");
datetime.parse("2020-01-01T00:00:00.123Z");
datetime.parse("2020-01-01T00:00:00.123456Z");
datetime.parse("2020-01-01T00:00:00+02:00");
Timezone offsets can be allowed by setting the offset
option to true
.
const datetime = z.string().datetime({ offset: true });
datetime.parse("2020-01-01T00:00:00+02:00");
datetime.parse("2020-01-01T00:00:00.123+02:00");
datetime.parse("2020-01-01T00:00:00.123+0200");
datetime.parse("2020-01-01T00:00:00.123+02");
datetime.parse("2020-01-01T00:00:00Z");
You can additionally constrain the allowable precision
. By default, arbitrary sub-second precision is supported (but optional).
const datetime = z.string().datetime({ precision: 3 });
datetime.parse("2020-01-01T00:00:00.123Z");
datetime.parse("2020-01-01T00:00:00Z");
datetime.parse("2020-01-01T00:00:00.123456Z");
IP addresses
The z.string().ip()
method by default validate IPv4 and IPv6.
const ip = z.string().ip();
ip.parse("192.168.1.1");
ip.parse("84d5:51a0:9114:1855:4cfa:f2d7:1f12:7003");
ip.parse("84d5:51a0:9114:1855:4cfa:f2d7:1f12:192.168.1.1");
ip.parse("256.1.1.1");
ip.parse("84d5:51a0:9114:gggg:4cfa:f2d7:1f12:7003");
You can additionally set the IP version
.
const ipv4 = z.string().ip({ version: "v4" });
ipv4.parse("84d5:51a0:9114:1855:4cfa:f2d7:1f12:7003");
const ipv6 = z.string().ip({ version: "v6" });
ipv6.parse("192.168.1.1");
Numbers
You can customize certain error messages when creating a number schema.
const age = z.number({
required_error: "Age is required",
invalid_type_error: "Age must be a number",
});
Zod includes a handful of number-specific validations.
z.number().gt(5);
z.number().gte(5);
z.number().lt(5);
z.number().lte(5);
z.number().int();
z.number().positive();
z.number().nonnegative();
z.number().negative();
z.number().nonpositive();
z.number().multipleOf(5);
z.number().finite();
z.number().safe();
Optionally, you can pass in a second argument to provide a custom error message.
z.number().lte(5, { message: "this👏is👏too👏big" });
BigInts
Zod includes a handful of bigint-specific validations.
z.bigint().gt(5n);
z.bigint().gte(5n);
z.bigint().lt(5n);
z.bigint().lte(5n);
z.bigint().positive();
z.bigint().nonnegative();
z.bigint().negative();
z.bigint().nonpositive();
z.bigint().multipleOf(5n);
NaNs
You can customize certain error messages when creating a nan schema.
const isNaN = z.nan({
required_error: "isNaN is required",
invalid_type_error: "isNaN must be not a number",
});
Booleans
You can customize certain error messages when creating a boolean schema.
const isActive = z.boolean({
required_error: "isActive is required",
invalid_type_error: "isActive must be a boolean",
});
Dates
Use z.date() to validate Date
instances.
z.date().safeParse(new Date());
z.date().safeParse("2022-01-12T00:00:00.000Z");
You can customize certain error messages when creating a date schema.
const myDateSchema = z.date({
required_error: "Please select a date and time",
invalid_type_error: "That's not a date!",
});
Zod provides a handful of date-specific validations.
z.date().min(new Date("1900-01-01"), { message: "Too old" });
z.date().max(new Date(), { message: "Too young!" });
Coercion to Date
Since zod 3.20, use z.coerce.date()
to pass the input through new Date(input)
.
const dateSchema = z.coerce.date();
type DateSchema = z.infer<typeof dateSchema>;
console.log(dateSchema.safeParse("2023-01-10T00:00:00.000Z").success);
console.log(dateSchema.safeParse("2023-01-10").success);
console.log(dateSchema.safeParse("1/10/23").success);
console.log(dateSchema.safeParse(new Date("1/10/23")).success);
console.log(dateSchema.safeParse("2023-13-10").success);
console.log(dateSchema.safeParse("0000-00-00").success);
For older zod versions, use z.preprocess
like described in this thread.
Zod enums
const FishEnum = z.enum(["Salmon", "Tuna", "Trout"]);
type FishEnum = z.infer<typeof FishEnum>;
z.enum
is a Zod-native way to declare a schema with a fixed set of allowable string values. Pass the array of values directly into z.enum()
. Alternatively, use as const
to define your enum values as a tuple of strings. See the const assertion docs for details.
const VALUES = ["Salmon", "Tuna", "Trout"] as const;
const FishEnum = z.enum(VALUES);
This is not allowed, since Zod isn't able to infer the exact values of each element.
const fish = ["Salmon", "Tuna", "Trout"];
const FishEnum = z.enum(fish);
Autocompletion
To get autocompletion with a Zod enum, use the .enum
property of your schema:
FishEnum.enum.Salmon;
FishEnum.enum;
You can also retrieve the list of options as a tuple with the .options
property:
FishEnum.options;
Native enums
Zod enums are the recommended approach to defining and validating enums. But if you need to validate against an enum from a third-party library (or you don't want to rewrite your existing enums) you can use z.nativeEnum()
.
Numeric enums
enum Fruits {
Apple,
Banana,
}
const FruitEnum = z.nativeEnum(Fruits);
type FruitEnum = z.infer<typeof FruitEnum>;
FruitEnum.parse(Fruits.Apple);
FruitEnum.parse(Fruits.Banana);
FruitEnum.parse(0);
FruitEnum.parse(1);
FruitEnum.parse(3);
String enums
enum Fruits {
Apple = "apple",
Banana = "banana",
Cantaloupe,
}
const FruitEnum = z.nativeEnum(Fruits);
type FruitEnum = z.infer<typeof FruitEnum>;
FruitEnum.parse(Fruits.Apple);
FruitEnum.parse(Fruits.Cantaloupe);
FruitEnum.parse("apple");
FruitEnum.parse("banana");
FruitEnum.parse(0);
FruitEnum.parse("Cantaloupe");
Const enums
The .nativeEnum()
function works for as const
objects as well. ⚠️ as const
required TypeScript 3.4+!
const Fruits = {
Apple: "apple",
Banana: "banana",
Cantaloupe: 3,
} as const;
const FruitEnum = z.nativeEnum(Fruits);
type FruitEnum = z.infer<typeof FruitEnum>;
FruitEnum.parse("apple");
FruitEnum.parse("banana");
FruitEnum.parse(3);
FruitEnum.parse("Cantaloupe");
You can access the underlying object with the .enum
property:
FruitEnum.enum.Apple;
Optionals
You can make any schema optional with z.optional()
. This wraps the schema in a ZodOptional
instance and returns the result.
const schema = z.optional(z.string());
schema.parse(undefined);
type A = z.infer<typeof schema>;
For convenience, you can also call the .optional()
method on an existing schema.
const user = z.object({
username: z.string().optional(),
});
type C = z.infer<typeof user>;
You can extract the wrapped schema from a ZodOptional
instance with .unwrap()
.
const stringSchema = z.string();
const optionalString = stringSchema.optional();
optionalString.unwrap() === stringSchema;
Nullables
Similarly, you can create nullable types with z.nullable()
.
const nullableString = z.nullable(z.string());
nullableString.parse("asdf");
nullableString.parse(null);
Or use the .nullable()
method.
const E = z.string().nullable();
type E = z.infer<typeof E>;
Extract the inner schema with .unwrap()
.
const stringSchema = z.string();
const nullableString = stringSchema.nullable();
nullableString.unwrap() === stringSchema;
Objects
const Dog = z.object({
name: z.string(),
age: z.number(),
});
type Dog = z.infer<typeof Dog>;
type Dog = {
name: string;
age: number;
};
.shape
Use .shape
to access the schemas for a particular key.
Dog.shape.name;
Dog.shape.age;
.keyof
Use .keyof
to create a ZodEnum
schema from the keys of an object schema.
const keySchema = Dog.keyof();
keySchema;
.extend
You can add additional fields to an object schema with the .extend
method.
const DogWithBreed = Dog.extend({
breed: z.string(),
});
You can use .extend
to overwrite fields! Be careful with this power!
.merge
Equivalent to A.extend(B.shape)
.
const BaseTeacher = z.object({ students: z.array(z.string()) });
const HasID = z.object({ id: z.string() });
const Teacher = BaseTeacher.merge(HasID);
type Teacher = z.infer<typeof Teacher>;
If the two schemas share keys, the properties of B overrides the property of A. The returned schema also inherits the "unknownKeys" policy (strip/strict/passthrough) and the catchall schema of B.
.pick/.omit
Inspired by TypeScript's built-in Pick
and Omit
utility types, all Zod object schemas have .pick
and .omit
methods that return a modified version. Consider this Recipe schema:
const Recipe = z.object({
id: z.string(),
name: z.string(),
ingredients: z.array(z.string()),
});
To only keep certain keys, use .pick
.
const JustTheName = Recipe.pick({ name: true });
type JustTheName = z.infer<typeof JustTheName>;
To remove certain keys, use .omit
.
const NoIDRecipe = Recipe.omit({ id: true });
type NoIDRecipe = z.infer<typeof NoIDRecipe>;
.partial
Inspired by the built-in TypeScript utility type Partial, the .partial
method makes all properties optional.
Starting from this object:
const user = z.object({
email: z.string()
username: z.string(),
});
We can create a partial version:
const partialUser = user.partial();
You can also specify which properties to make optional:
const optionalEmail = user.partial({
email: true,
});
.deepPartial
The .partial
method is shallow — it only applies one level deep. There is also a "deep" version:
const user = z.object({
username: z.string(),
location: z.object({
latitude: z.number(),
longitude: z.number(),
}),
strings: z.array(z.object({ value: z.string() })),
});
const deepPartialUser = user.deepPartial();
Important limitation: deep partials only work as expected in hierarchies of objects, arrays, and tuples.
.required
Contrary to the .partial
method, the .required
method makes all properties required.
Starting from this object:
const user = z.object({
email: z.string()
username: z.string(),
}).partial();
We can create a required version:
const requiredUser = user.required();
You can also specify which properties to make required:
const requiredEmail = user.required({
email: true,
});
.passthrough
By default Zod object schemas strip out unrecognized keys during parsing.
const person = z.object({
name: z.string(),
});
person.parse({
name: "bob dylan",
extraKey: 61,
});
Instead, if you want to pass through unknown keys, use .passthrough()
.
person.passthrough().parse({
name: "bob dylan",
extraKey: 61,
});
.strict
By default Zod object schemas strip out unrecognized keys during parsing. You can disallow unknown keys with .strict()
. If there are any unknown keys in the input, Zod will throw an error.
const person = z
.object({
name: z.string(),
})
.strict();
person.parse({
name: "bob dylan",
extraKey: 61,
});
.strip
You can use the .strip
method to reset an object schema to the default behavior (stripping unrecognized keys).
.catchall
You can pass a "catchall" schema into an object schema. All unknown keys will be validated against it.
const person = z
.object({
name: z.string(),
})
.catchall(z.number());
person.parse({
name: "bob dylan",
validExtraKey: 61,
});
person.parse({
name: "bob dylan",
validExtraKey: false,
});
Using .catchall()
obviates .passthrough()
, .strip()
, or .strict()
. All keys are now considered "known".
Arrays
const stringArray = z.array(z.string());
const stringArray = z.string().array();
Be careful with the .array()
method. It returns a new ZodArray
instance. This means the order in which you call methods matters. For instance:
z.string().optional().array();
z.string().array().optional();
.element
Use .element
to access the schema for an element of the array.
stringArray.element;
.nonempty
If you want to ensure that an array contains at least one element, use .nonempty()
.
const nonEmptyStrings = z.string().array().nonempty();
nonEmptyStrings.parse([]);
nonEmptyStrings.parse(["Ariana Grande"]);
You can optionally specify a custom error message:
const nonEmptyStrings = z.string().array().nonempty({
message: "Can't be empty!",
});
.min/.max/.length
z.string().array().min(5);
z.string().array().max(5);
z.string().array().length(5);
Unlike .nonempty()
these methods do not change the inferred type.
Tuples
Unlike arrays, tuples have a fixed number of elements and each element can have a different type.
const athleteSchema = z.tuple([
z.string(),
z.number(),
z.object({
pointsScored: z.number(),
}),
]);
type Athlete = z.infer<typeof athleteSchema>;
A variadic ("rest") argument can be added with the .rest
method.
const variadicTuple = z.tuple([z.string()]).rest(z.number());
const result = variadicTuple.parse(["hello", 1, 2, 3]);
Unions
Zod includes a built-in z.union
method for composing "OR" types.
const stringOrNumber = z.union([z.string(), z.number()]);
stringOrNumber.parse("foo");
stringOrNumber.parse(14);
Zod will test the input against each of the "options" in order and return the first value that validates successfully.
For convenience, you can also use the .or
method:
const stringOrNumber = z.string().or(z.number());
Optional string validation:
To validate an optional form input, you can union the desired string validation with an empty string literal.
This example validates an input that is optional but needs to contain a valid URL:
const optionalUrl = z.union([z.string().url().nullish(), z.literal("")]);
console.log(optionalUrl.safeParse(undefined).success);
console.log(optionalUrl.safeParse(null).success);
console.log(optionalUrl.safeParse("").success);
console.log(optionalUrl.safeParse("https://zod.dev").success);
console.log(optionalUrl.safeParse("not a valid url").success);
Discriminated unions
A discriminated union is a union of object schemas that all share a particular key.
type MyUnion =
| { status: "success"; data: string }
| { status: "failed"; error: Error };
Such unions can be represented with the z.discriminatedUnion
method. This enables faster evaluation, because Zod can check the discriminator key (status
in the example above) to determine which schema should be used to parse the input. This makes parsing more efficient and lets Zod report friendlier errors.
With the basic union method, the input is tested against each of the provided "options", and in the case of invalidity, issues for all the "options" are shown in the zod error. On the other hand, the discriminated union allows for selecting just one of the "options", testing against it, and showing only the issues related to this "option".
const myUnion = z.discriminatedUnion("status", [
z.object({ status: z.literal("success"), data: z.string() }),
z.object({ status: z.literal("failed"), error: z.instanceof(Error) }),
]);
myUnion.parse({ status: "success", data: "yippie ki yay" });
Records
Record schemas are used to validate types such as { [k: string]: number }
.
If you want to validate the values of an object against some schema but don't care about the keys, use z.record(valueType)
:
const NumberCache = z.record(z.number());
type NumberCache = z.infer<typeof NumberCache>;
This is particularly useful for storing or caching items by ID.
const userStore: UserStore = {};
userStore["77d2586b-9e8e-4ecf-8b21-ea7e0530eadd"] = {
name: "Carlotta",
};
userStore["77d2586b-9e8e-4ecf-8b21-ea7e0530eadd"] = {
whatever: "Ice cream sundae",
};
Record key type
If you want to validate both the keys and the values, use
z.record(keyType, valueType)
:
const NoEmptyKeysSchema = z.record(z.string().min(1), z.number());
NoEmptyKeysSchema.parse({ count: 1 });
NoEmptyKeysSchema.parse({ "": 1 });
(Notice how when passing two arguments, valueType
is the second argument)
A note on numerical keys
While z.record(keyType, valueType)
is able to accept numerical key types and TypeScript's built-in Record type is Record<KeyType, ValueType>
, it's hard to represent the TypeScript type Record<number, any>
in Zod.
As it turns out, TypeScript's behavior surrounding [k: number]
is a little unintuitive:
const testMap: { [k: number]: string } = {
1: "one",
};
for (const key in testMap) {
console.log(`${key}: ${typeof key}`);
}
As you can see, JavaScript automatically casts all object keys to strings under the hood. Since Zod is trying to bridge the gap between static and runtime types, it doesn't make sense to provide a way of creating a record schema with numerical keys, since there's no such thing as a numerical key in runtime JavaScript.
Maps
const stringNumberMap = z.map(z.string(), z.number());
type StringNumberMap = z.infer<typeof stringNumberMap>;
Sets
const numberSet = z.set(z.number());
type NumberSet = z.infer<typeof numberSet>;
Set schemas can be further constrained with the following utility methods.
z.set(z.string()).nonempty();
z.set(z.string()).min(5);
z.set(z.string()).max(5);
z.set(z.string()).size(5);
Intersections
Intersections are useful for creating "logical AND" types. This is useful for intersecting two object types.
const Person = z.object({
name: z.string(),
});
const Employee = z.object({
role: z.string(),
});
const EmployedPerson = z.intersection(Person, Employee);
const EmployedPerson = Person.and(Employee);
Though in many cases, it is recommended to use A.merge(B)
to merge two objects. The .merge
method returns a new ZodObject
instance, whereas A.and(B)
returns a less useful ZodIntersection
instance that lacks common object methods like pick
and omit
.
const a = z.union([z.number(), z.string()]);
const b = z.union([z.number(), z.boolean()]);
const c = z.intersection(a, b);
type c = z.infer<typeof c>;
Recursive types
You can define a recursive schema in Zod, but because of a limitation of TypeScript, their type can't be statically inferred. Instead you'll need to define the type definition manually, and provide it to Zod as a "type hint".
const baseCategorySchema = z.object({
name: z.string(),
});
type Category = z.infer<typeof baseCategorySchema> & {
subcategories: Category[];
};
const categorySchema: z.ZodType<Category> = baseCategorySchema.extend({
subcategories: z.lazy(() => categorySchema.array()),
});
categorySchema.parse({
name: "People",
subcategories: [
{
name: "Politicians",
subcategories: [
{
name: "Presidents",
subcategories: [],
},
],
},
],
});
Thanks to crasite for this example.
ZodType with ZodEffects
When using z.ZodType
with z.ZodEffects
(
.refine
,
.transform
,
preprocess
,
etc...
), you will need to define the input and output types of the schema. z.ZodType<Output, z.ZodTypeDef, Input>
const isValidId = (id: string): id is `${string}/${string}` =>
id.split("/").length === 2;
const baseSchema = z.object({
id: z.string().refine(isValidId),
});
type Input = z.input<typeof baseSchema> & {
children: Input[];
};
type Output = z.output<typeof baseSchema> & {
children: Output[];
};
const schema: z.ZodType<Output, z.ZodTypeDef, Input> = baseSchema.extend({
children: z.lazy(() => schema.array()),
});
Thanks to marcus13371337 and JoelBeeldi for this example.
JSON type
If you want to validate any JSON value, you can use the snippet below.
const literalSchema = z.union([z.string(), z.number(), z.boolean(), z.null()]);
type Literal = z.infer<typeof literalSchema>;
type Json = Literal | { [key: string]: Json } | Json[];
const jsonSchema: z.ZodType<Json> = z.lazy(() =>
z.union([literalSchema, z.array(jsonSchema), z.record(jsonSchema)])
);
jsonSchema.parse(data);
Thanks to ggoodman for suggesting this.
Cyclical objects
Despite supporting recursive schemas, passing cyclical data into Zod will cause an infinite loop.
Promises
const numberPromise = z.promise(z.number());
"Parsing" works a little differently with promise schemas. Validation happens in two parts:
- Zod synchronously checks that the input is an instance of Promise (i.e. an object with
.then
and .catch
methods.). - Zod uses
.then
to attach an additional validation step onto the existing Promise. You'll have to use .catch
on the returned Promise to handle validation failures.
numberPromise.parse("tuna");
numberPromise.parse(Promise.resolve("tuna"));
const test = async () => {
await numberPromise.parse(Promise.resolve("tuna"));
await numberPromise.parse(Promise.resolve(3.14));
};
Instanceof
You can use z.instanceof
to check that the input is an instance of a class. This is useful to validate inputs against classes that are exported from third-party libraries.
class Test {
name: string;
}
const TestSchema = z.instanceof(Test);
const blob: any = "whatever";
TestSchema.parse(new Test());
TestSchema.parse("blob");
Functions
Zod also lets you define "function schemas". This makes it easy to validate the inputs and outputs of a function without intermixing your validation code and "business logic".
You can create a function schema with z.function(args, returnType)
.
const myFunction = z.function();
type myFunction = z.infer<typeof myFunction>;
Define inputs and outputs.
const myFunction = z
.function()
.args(z.string(), z.number())
.returns(z.boolean());
type myFunction = z.infer<typeof myFunction>;
Function schemas have an .implement()
method which accepts a function and returns a new function that automatically validates its inputs and outputs.
const trimmedLength = z
.function()
.args(z.string())
.returns(z.number())
.implement((x) => {
return x.trim().length;
});
trimmedLength("sandwich");
trimmedLength(" asdf ");
If you only care about validating inputs, just don't call the .returns()
method. The output type will be inferred from the implementation.
You can use the special z.void()
option if your function doesn't return anything. This will let Zod properly infer the type of void-returning functions. (Void-returning functions actually return undefined.)
const myFunction = z
.function()
.args(z.string())
.implement((arg) => {
return [arg.length];
});
myFunction;
Extract the input and output schemas from a function schema.
myFunction.parameters();
myFunction.returnType();
Preprocess
Zod now supports primitive coercion without the need for .preprocess()
. See the coercion docs for more information.
Typically Zod operates under a "parse then transform" paradigm. Zod validates the input first, then passes it through a chain of transformation functions. (For more information about transforms, read the .transform docs.)
But sometimes you want to apply some transform to the input before parsing happens. A common use case: type coercion. Zod enables this with the z.preprocess()
.
const castToString = z.preprocess((val) => String(val), z.string());
This returns a ZodEffects
instance. ZodEffects
is a wrapper class that contains all logic pertaining to preprocessing, refinements, and transforms.
Custom schemas
You can create a Zod schema for any TypeScript type by using z.custom()
. This is useful for creating schemas for types that are not supported by Zod out of the box, such as template string literals.
const px = z.custom<`${number}px`>((val) => {
return /^\d+px$/.test(val as string);
});
type px = z.infer<typeof px>;
px.parse("42px");
px.parse("42vw");
If you don't provide a validation function, Zod will allow any value. This can be dangerous!
z.custom<{ arg: string }>();
You can customize the error message and other options by passing a second argument. This parameter works the same way as the params parameter of .refine
.
z.custom<...>((val) => ..., "custom error message");
Schema methods
All Zod schemas contain certain methods.
.parse
.parse(data: unknown): T
Given any Zod schema, you can call its .parse
method to check data
is valid. If it is, a value is returned with full type information! Otherwise, an error is thrown.
IMPORTANT: The value returned by .parse
is a deep clone of the variable you passed in.
const stringSchema = z.string();
stringSchema.parse("fish");
stringSchema.parse(12);
.parseAsync
.parseAsync(data:unknown): Promise<T>
If you use asynchronous refinements or transforms (more on those later), you'll need to use .parseAsync
.
const stringSchema = z.string().refine(async (val) => val.length <= 8);
await stringSchema.parseAsync("hello");
await stringSchema.parseAsync("hello world");
.safeParse
.safeParse(data:unknown): { success: true; data: T; } | { success: false; error: ZodError; }
If you don't want Zod to throw errors when validation fails, use .safeParse
. This method returns an object containing either the successfully parsed data or a ZodError instance containing detailed information about the validation problems.
stringSchema.safeParse(12);
stringSchema.safeParse("billie");
The result is a discriminated union, so you can handle errors very conveniently:
const result = stringSchema.safeParse("billie");
if (!result.success) {
result.error;
} else {
result.data;
}
.safeParseAsync
Alias: .spa
An asynchronous version of safeParse
.
await stringSchema.safeParseAsync("billie");
For convenience, this has been aliased to .spa
:
await stringSchema.spa("billie");
.refine
.refine(validator: (data:T)=>any, params?: RefineParams)
Zod lets you provide custom validation logic via refinements. (For advanced features like creating multiple issues and customizing error codes, see .superRefine
.)
Zod was designed to mirror TypeScript as closely as possible. But there are many so-called "refinement types" you may wish to check for that can't be represented in TypeScript's type system. For instance: checking that a number is an integer or that a string is a valid email address.
For example, you can define a custom validation check on any Zod schema with .refine
:
const myString = z.string().refine((val) => val.length <= 255, {
message: "String can't be more than 255 characters",
});
⚠️ Refinement functions should not throw. Instead they should return a falsy value to signal failure.
Arguments
As you can see, .refine
takes two arguments.
- The first is the validation function. This function takes one input (of type
T
— the inferred type of the schema) and returns any
. Any truthy value will pass validation. (Prior to zod@1.6.2 the validation function had to return a boolean.) - The second argument accepts some options. You can use this to customize certain error-handling behavior:
type RefineParams = {
message?: string;
path?: (string | number)[];
params?: object;
};
For advanced cases, the second argument can also be a function that returns RefineParams
.
const longString = z.string().refine(
(val) => val.length > 10,
(val) => ({ message: `${val} is not more than 10 characters` })
);
Customize error path
const passwordForm = z
.object({
password: z.string(),
confirm: z.string(),
})
.refine((data) => data.password === data.confirm, {
message: "Passwords don't match",
path: ["confirm"],
});
passwordForm.parse({ password: "asdf", confirm: "qwer" });
Because you provided a path
parameter, the resulting error will be:
ZodError {
issues: [{
"code": "custom",
"path": [ "confirm" ],
"message": "Passwords don't match"
}]
}
Asynchronous refinements
Refinements can also be async:
const userId = z.string().refine(async (id) => {
return true;
});
⚠️ If you use async refinements, you must use the .parseAsync
method to parse data! Otherwise Zod will throw an error.
Relationship to transforms
Transforms and refinements can be interleaved:
z.string()
.transform((val) => val.length)
.refine((val) => val > 25);
.superRefine
The .refine
method is actually syntactic sugar atop a more versatile (and verbose) method called superRefine
. Here's an example:
const Strings = z.array(z.string()).superRefine((val, ctx) => {
if (val.length > 3) {
ctx.addIssue({
code: z.ZodIssueCode.too_big,
maximum: 3,
type: "array",
inclusive: true,
message: "Too many items 😡",
});
}
if (val.length !== new Set(val).size) {
ctx.addIssue({
code: z.ZodIssueCode.custom,
message: `No duplicates allowed.`,
});
}
});
You can add as many issues as you like. If ctx.addIssue
is not called during the execution of the function, validation passes.
Normally refinements always create issues with a ZodIssueCode.custom
error code, but with superRefine
it's possible to throw issues of any ZodIssueCode
. Each issue code is described in detail in the Error Handling guide: ERROR_HANDLING.md.
Abort early
By default, parsing will continue even after a refinement check fails. For instance, if you chain together multiple refinements, they will all be executed. However, it may be desirable to abort early to prevent later refinements from being executed. To achieve this, pass the fatal
flag to ctx.addIssue
and return z.NEVER
.
const schema = z.number().superRefine((val, ctx) => {
if (val < 10) {
ctx.addIssue({
code: z.ZodIssueCode.custom,
message: "should be >= 10",
fatal: true,
});
return z.NEVER;
}
if (val !== 12) {
ctx.addIssue({
code: z.ZodIssueCode.custom,
message: "should be twelve",
});
}
});
Type refinements
If you provide a type predicate to .refine()
or .superRefine()
, the resulting type will be narrowed down to your predicate's type. This is useful if you are mixing multiple chained refinements and transformations:
const schema = z
.object({
first: z.string(),
second: z.number(),
})
.nullable()
.superRefine((arg, ctx): arg is { first: string; second: number } => {
if (!arg) {
ctx.addIssue({
code: z.ZodIssueCode.custom,
message: "object should exist",
});
}
return z.NEVER;
})
.refine((arg) => arg.first === "bob", "`first` is not `bob`!");
⚠️ You must use ctx.addIssue()
instead of returning a boolean value to indicate whether the validation passes. If ctx.addIssue
is not called during the execution of the function, validation passes.
.transform
To transform data after parsing, use the transform
method.
const stringToNumber = z.string().transform((val) => val.length);
stringToNumber.parse("string");
Chaining order
Note that stringToNumber
above is an instance of the ZodEffects
subclass. It is NOT an instance of ZodString
. If you want to use the built-in methods of ZodString
(e.g. .email()
) you must apply those methods before any transforms.
const emailToDomain = z
.string()
.email()
.transform((val) => val.split("@")[1]);
emailToDomain.parse("colinhacks@example.com");
Validating during transform
The .transform
method can simultaneously validate and transform the value. This is often simpler and less duplicative than chaining transform
and refine
.
As with .superRefine
, the transform function receives a ctx
object with an addIssue
method that can be used to register validation issues.
const numberInString = z.string().transform((val, ctx) => {
const parsed = parseInt(val);
if (isNaN(parsed)) {
ctx.addIssue({
code: z.ZodIssueCode.custom,
message: "Not a number",
});
return z.NEVER;
}
return parsed;
});
Relationship to refinements
Transforms and refinements can be interleaved. These will be executed in the order they are declared.
const nameToGreeting = z
.string()
.transform((val) => val.toUpperCase())
.refine((val) => val.length > 15)
.transform((val) => `Hello ${val}`)
.refine((val) => val.indexOf("!") === -1);
Async transforms
Transforms can also be async.
const IdToUser = z
.string()
.uuid()
.transform(async (id) => {
return await getUserById(id);
});
⚠️ If your schema contains asynchronous transforms, you must use .parseAsync() or .safeParseAsync() to parse data. Otherwise Zod will throw an error.
.default
You can use transforms to implement the concept of "default values" in Zod.
const stringWithDefault = z.string().default("tuna");
stringWithDefault.parse(undefined);
Optionally, you can pass a function into .default
that will be re-executed whenever a default value needs to be generated:
const numberWithRandomDefault = z.number().default(Math.random);
numberWithRandomDefault.parse(undefined);
numberWithRandomDefault.parse(undefined);
numberWithRandomDefault.parse(undefined);
Conceptually, this is how Zod processes default values:
- If the input is
undefined
, the default value is returned - Otherwise, the data is parsed using the base schema
.describe
Use .describe()
to add a description
property to the resulting schema.
const documentedString = z
.string()
.describe("A useful bit of text, if you know what to do with it.");
documentedString.description;
This can be useful for documenting a field, for example in a JSON Schema using a library like zod-to-json-schema
).
.catch
Use .catch()
to provide a "catch value" to be returned in the event of a parsing error.
const numberWithCatch = z.number().catch(42);
numberWithCatch.parse(5);
numberWithCatch.parse("tuna");
Optionally, you can pass a function into .catch
that will be re-executed whenever a default value needs to be generated. A ctx
object containing the caught error will be passed into this function.
const numberWithRandomCatch = z.number().catch((ctx) => {
ctx.error;
return Math.random();
});
numberWithRandomCatch.parse("sup");
numberWithRandomCatch.parse("sup");
numberWithRandomCatch.parse("sup");
Conceptually, this is how Zod processes "catch values":
- The data is parsed using the base schema
- If the parsing fails, the "catch value" is returned
.optional
A convenience method that returns an optional version of a schema.
const optionalString = z.string().optional();
z.optional(z.string());
.nullable
A convenience method that returns a nullable version of a schema.
const nullableString = z.string().nullable();
z.nullable(z.string());
.nullish
A convenience method that returns a "nullish" version of a schema. Nullish schemas will accept both undefined
and null
. Read more about the concept of "nullish" in the TypeScript 3.7 release notes.
const nullishString = z.string().nullish();
z.string().optional().nullable();
.array
A convenience method that returns an array schema for the given type:
const stringArray = z.string().array();
z.array(z.string());
.promise
A convenience method for promise types:
const stringPromise = z.string().promise();
z.promise(z.string());
.or
A convenience method for union types.
const stringOrNumber = z.string().or(z.number());
z.union([z.string(), z.number()]);
.and
A convenience method for creating intersection types.
const nameAndAge = z
.object({ name: z.string() })
.and(z.object({ age: z.number() }));
z.intersection(z.object({ name: z.string() }), z.object({ age: z.number() }));
.brand
.brand<T>() => ZodBranded<this, B>
TypeScript's type system is structural, which means that any two types that are structurally equivalent are considered the same.
type Cat = { name: string };
type Dog = { name: string };
const petCat = (cat: Cat) => {};
const fido: Dog = { name: "fido" };
petCat(fido);
In some cases, its can be desirable to simulate nominal typing inside TypeScript. For instance, you may wish to write a function that only accepts an input that has been validated by Zod. This can be achieved with branded types (AKA opaque types).
const Cat = z.object({ name: z.string() }).brand<"Cat">();
type Cat = z.infer<typeof Cat>;
const petCat = (cat: Cat) => {};
const simba = Cat.parse({ name: "simba" });
petCat(simba);
petCat({ name: "fido" });
Under the hood, this works by attaching a "brand" to the inferred type using an intersection type. This way, plain/unbranded data structures are no longer assignable to the inferred type of the schema.
const Cat = z.object({ name: z.string() }).brand<"Cat">();
type Cat = z.infer<typeof Cat>;
Note that branded types do not affect the runtime result of .parse
. It is a static-only construct.
.pipe()
Schemas can be chained into validation "pipelines". It's useful for easily validating the result after a .transform()
:
z.string()
.transform((val) => val.length)
.pipe(z.number().min(5));
The .pipe()
method returns a ZodPipeline
instance.
You can use .pipe()
to fix common issues with z.coerce
.
You can constrain the input to types that work well with your chosen coercion. Then use .pipe()
to apply the coercion.
without constrained input:
const toDate = z.coerce.date()
console.log(toDate.safeParse('2023-01-01').success)
console.log(toDate.safeParse(null).success)
with constrained input:
const datelike = z.union([z.number(), z.string(), z.date()])
const datelikeToDate = datelike.pipe(z.coerce.date())
console.log(datelikeToDate.safeParse('2023-01-01').success)
console.log(datelikeToDate.safeParse(null).success)
You can also use this technique to avoid coercions that throw uncaught errors.
without constrained input:
const toBigInt = z.coerce.bigint()
console.log( toBigInt.safeParse( '42' ) )
console.log( toBigInt.safeParse( null ) )
with constrained input:
const toNumber = z.number().or( z.string() ).pipe( z.coerce.number() )
const toBigInt = z.bigint().or( toNumber ).pipe( z.coerce.bigint() )
console.log( toBigInt.safeParse( '42' ).success )
console.log( toBigInt.safeParse( null ).success )
Guides and concepts
Type inference
You can extract the TypeScript type of any schema with z.infer<typeof mySchema>
.
const A = z.string();
type A = z.infer<typeof A>;
const u: A = 12;
const u: A = "asdf";
What about transforms?
In reality each Zod schema internally tracks two types: an input and an output. For most schemas (e.g. z.string()
) these two are the same. But once you add transforms into the mix, these two values can diverge. For instance z.string().transform(val => val.length)
has an input of string
and an output of number
.
You can separately extract the input and output types like so:
const stringToNumber = z.string().transform((val) => val.length);
type input = z.input<typeof stringToNumber>;
type output = z.output<typeof stringToNumber>;
type inferred = z.infer<typeof stringToNumber>;
Writing generic functions
When attempting to write a function that accepts a Zod schema as an input, it's common to try something like this:
function makeSchemaOptional<T>(schema: z.ZodType<T>) {
return schema.optional();
}
This approach has some issues. The schema
variable in this function is typed as an instance of ZodType
, which is an abstract class that all Zod schemas inherit from. This approach loses type information, namely which subclass the input actually is.
const arg = makeSchemaOptional(z.string());
arg.unwrap();
A better approach is for the generic parameter to refer to the schema as a whole.
function makeSchemaOptional<T extends z.ZodTypeAny>(schema: T) {
return schema.optional();
}
ZodTypeAny
is just a shorthand for ZodType<any, any, any>
, a type that is broad enough to match any Zod schema.
As you can see, schema
is now fully and properly typed.
const arg = makeSchemaOptional(z.string());
arg.unwrap();
Constraining allowable inputs
The ZodType
class has three generic parameters.
class ZodType<
Output = any,
Def extends ZodTypeDef = ZodTypeDef,
Input = Output
> { ... }
By constraining these in your generic input, you can limit what schemas are allowable as inputs to your function:
function makeSchemaOptional<T extends z.ZodType<string>>(schema: T) {
return schema.optional();
}
makeSchemaOptional(z.string());
makeSchemaOptional(z.number());
Error handling
Zod provides a subclass of Error called ZodError
. ZodErrors contain an issues
array containing detailed information about the validation problems.
const result = z
.object({
name: z.string(),
})
.safeParse({ name: 12 });
if (!result.success) {
result.error.issues;
}
For detailed information about the possible error codes and how to customize error messages, check out the dedicated error handling guide: ERROR_HANDLING.md
Zod's error reporting emphasizes completeness and correctness. If you are looking to present a useful error message to the end user, you should either override Zod's error messages using an error map (described in detail in the Error Handling guide) or use a third-party library like zod-validation-error
Error formatting
You can use the .format()
method to convert this error into a nested object.
const result = z
.object({
name: z.string(),
})
.safeParse({ name: 12 });
if (!result.success) {
const formatted = result.error.format();
formatted.name?._errors;
}
Comparison
There are a handful of other widely-used validation libraries, but all of them have certain design limitations that make for a non-ideal developer experience.
Joi
https://github.com/hapijs/joi
Doesn't support static type inference 😕
Yup
https://github.com/jquense/yup
Yup is a full-featured library that was implemented first in vanilla JS, and later rewritten in TypeScript.
- Supports casting and transforms
- All object fields are optional by default
- Missing object methods: (partial, deepPartial)
- Missing promise schemas
- Missing function schemas
- Missing union & intersection schemas
io-ts
https://github.com/gcanti/io-ts
io-ts is an excellent library by gcanti. The API of io-ts heavily inspired the design of Zod.
In our experience, io-ts prioritizes functional programming purity over developer experience in many cases. This is a valid and admirable design goal, but it makes io-ts particularly hard to integrate into an existing codebase with a more procedural or object-oriented bias. For instance, consider how to define an object with optional properties in io-ts:
import * as t from "io-ts";
const A = t.type({
foo: t.string,
});
const B = t.partial({
bar: t.number,
});
const C = t.intersection([A, B]);
type C = t.TypeOf<typeof C>;
You must define the required and optional props in separate object validators, pass the optionals through t.partial
(which marks all properties as optional), then combine them with t.intersection
.
Consider the equivalent in Zod:
const C = z.object({
foo: z.string(),
bar: z.number().optional(),
});
type C = z.infer<typeof C>;
This more declarative API makes schema definitions vastly more concise.
io-ts
also requires the use of gcanti's functional programming library fp-ts
to parse results and handle errors. This is another fantastic resource for developers looking to keep their codebase strictly functional. But depending on fp-ts
necessarily comes with a lot of intellectual overhead; a developer has to be familiar with functional programming concepts and the fp-ts
nomenclature to use the library.
- Supports codecs with serialization & deserialization transforms
- Supports branded types
- Supports advanced functional programming, higher-kinded types,
fp-ts
compatibility - Missing object methods: (pick, omit, partial, deepPartial, merge, extend)
- Missing nonempty arrays with proper typing (
[T, ...T[]]
) - Missing promise schemas
- Missing function schemas
Runtypes
https://github.com/pelotom/runtypes
Good type inference support, but limited options for object type masking (no .pick
, .omit
, .extend
, etc.). No support for Record
s (their Record
is equivalent to Zod's object
). They DO support readonly types, which Zod does not.
- Supports "pattern matching": computed properties that distribute over unions
- Supports readonly types
- Missing object methods: (deepPartial, merge)
- Missing nonempty arrays with proper typing (
[T, ...T[]]
) - Missing promise schemas
- Missing error customization
Ow
https://github.com/sindresorhus/ow
Ow is focused on function input validation. It's a library that makes it easy to express complicated assert statements, but it doesn't let you parse untyped data. They support a much wider variety of types; Zod has a nearly one-to-one mapping with TypeScript's type system, whereas ow lets you validate several highly-specific types out of the box (e.g. int32Array
, see full list in their README).
If you want to validate function inputs, use function schemas in Zod! It's a much simpler approach that lets you reuse a function type declaration without repeating yourself (namely, copy-pasting a bunch of ow assertions at the beginning of every function). Also Zod lets you validate your return types as well, so you can be sure there won't be any unexpected data passed downstream.
Changelog
View the changelog at CHANGELOG.md