Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

JaxSSO

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

JaxSSO

A framework for structural shape optimization based on automatic differentiation (AD) and the adjoint method, enabled by JAX

  • 0.0.6
  • PyPI
  • Socket score

Maintainers
1

JaxSSO

A framework for structural shape optimization based on automatic differentiation (AD) and the adjoint method, enabled by JAX.

Developed by Gaoyuan Wu @ Princeton.

We have a preprint under review where you can find details regarding this framework. Please share our project with others and cite us if you find it interesting and helpful. Cite us using:

@misc{https://doi.org/10.48550/arxiv.2211.15409,
  doi = {10.48550/ARXIV.2211.15409},
  url = {https://arxiv.org/abs/2211.15409},
  author = {Wu, Gaoyuan},
  title = {A framework for structural shape optimization based on automatic differentiation, the adjoint method and accelerated linear algebra},
  publisher = {arXiv},
  year = {2022},
}

Features

  • Automatic differentiation (AD): an easy and accurate way for gradient evaluation. The implementation of AD avoids deriving derivatives manually or trauncation errors from numerical differentiation.
  • Acclerated linear algebra (XLA) and just-in-time compilation: these features in JAX boost the gradient evaluation
  • Hardware acceleration: run on GPUs and TPUs for faster experience.
  • Form finding based on finite element analysis (FEA) and optimization theory

Here is an implementation of JaxSSO to form-find a structure inspired by Mannheim Multihalle using simple gradient descent. (First photo credit to Daniel Lukac) alt text alt text

Background: shape optimization

We consider the minimization of the strain energy by changing the shape of structures, which is equivalent to maximizing the stiffness and reducing the bending in the structure. The mathematical formulation of this problem is as follows, where no additional constraints are considered. $$\text{minimize} \quad C(\mathbf{x}) = \frac{1}{2}\int\sigma\epsilon \mathrm{d}V = \frac{1}{2}\mathbf{f}^\mathrm{T}\mathbf{u}(\mathbf{x}) $$ $$\text{subject to: } \quad \mathbf{K}(\mathbf{x})\mathbf{u}(\mathbf{x}) =\mathbf{f}$$ where $C$ is the compliance, which is equal to the work done by the external load; $\mathbf{x} \in \mathbb{R}^{n_d}$ is a vector of $n_d$ design variables that determine the shape of the structure; $\sigma$, $\epsilon$ and $V$ are the stress, strain and volume, respectively; $\mathbf{f} \in \mathbb{R}^n$ and $\mathbf{u}(\mathbf{x}) \in \mathbb{R}^n$ are the generalized load vector and nodal displacement of $n$ structural nodes; $\mathbf{K} \in \mathbb{R}^{6n\times6n}$ is the stiffness matrix. The constraint is essentially the governing equation in finite element analysis (FEA).

To implement gradient-based optimization, one needs to calculate $\nabla C$. By applying the adjoint method, the entry of $\nabla C$ is as follows: $$\frac{\partial C}{\partial x_i}=-\frac{1}{2}\mathbf{u}^\mathrm{T}\frac{\partial \mathbf{K}}{\partial x_i}\mathbf{u}$$ The use of the adjoint method: i) reduces the computation complexity and ii) decouples FEA and the derivative calculation of the stiffness matrix $\mathbf K$. To get $\nabla C$:

  1. Conduct FEA to get $\mathbf u$
  2. Conduct sensitivity analysis to get $\frac{\partial \mathbf{K}}{\partial x_i}$.

Usage

Installation

Install it with pip: pip install JaxSSO

Dependencies

JaxSSO is written in Python and requires:

  • numpy >= 1.22.0.
  • JAX: "JAX is Autograd and XLA, brought together for high-performance machine learning research." Please refer to this link for the installation of JAX.
  • Nlopt: Nlopt is a library for nonlinear optimization. It has Python interface, which is implemented herein. Refer to this link for the installation of Nlopt. Alternatively, you can use pip install nlopt, please refer to nlopt-python.
  • scipy.

Quickstart

The project provides you with interactive examples with Google Colab for quick start:

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc