New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

accbpg

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

accbpg

Accelerated Bregman proximal gradient (ABPG) methods

  • 0.2
  • PyPI
  • Socket score

Maintainers
1

Accelerated Bregman Proximal Gradient Methods

A Python package of accelerated first-order algorithms for solving relatively-smooth convex optimization problems

minimize { f(x) + P(x) | x in C }

with a reference function h(x), where C is a closed convex set and

  • h(x) is convex and essentially smooth on C;
  • f(x) is convex and differentiable, and L-smooth relative to h(x), that is, f(x)-L*h(x) is convex;
  • P(x) is convex and closed (lower semi-continuous).

Implemented algorithms in HRX2018:

  • BPG(Bregman proximal gradient) method with line search option
  • ABPG (Accelerated BPG) method
  • ABPG-expo (ABPG with exponent adaption)
  • ABPG-gain (ABPG with gain adaption)
  • ABDA (Accelerated Bregman dual averaging) method

Additional algorithms for solving D-Optimal Experiment Design problems:

  • D_opt_FW (basic Frank-Wolfe method)
  • D_opt_FW_away (Frank-Wolfe method with away steps)

Install

Clone or fork from GitHub. Or install from PyPI:

pip install accbpg

Usage

Example: generate a random instance of D-optimal design problem and solve it using two different methods.

import accbpg

# generate a random instance of D-optimal design problem of size 80 by 200
f, h, L, x0 = accbpg.D_opt_design(80, 200)

# solve the problem instance using BPG with line search
x1, F1, G1, T1 = accbpg.BPG(f, h, L, x0, maxitrs=1000, verbskip=100)

# solve it again using ABPG with gamma=2
x2, F2, G2, T2 = accbpg.ABPG(f, h, L, x0, gamma=2, maxitrs=1000, verbskip=100)

# solve it again using adaptive variant of ABPG with gamma=2
x3, F3, G3, _, _, T3 = accbpg.ABPG_gain(f, h, L, x0, gamma=2, maxitrs=1000, verbskip=100)

D-optimal experiment design problems can be constructed from files (LIBSVM format) directly using

f, h, L, X0 = accbpg.D_opt_libsvm(filename)

All algorithms can work with customized functions f(x) and h(x), and an example is given in this Python file.

Additional examples

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc