Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

adopy

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

adopy

Adaptive Design Optimization on Experimental Tasks

  • 0.4.1
  • PyPI
  • Socket score

Maintainers
1

ADOpy

PyPI Project Status: Active – The project has reached a stable, usable state and is being actively developed. Travis CI CodeCov

ADOpy is a Python implementation of Adaptive Design Optimization (ADO; Myung, Cavagnaro, & Pitt, 2013), which computes optimal designs dynamically in an experiment. Its modular structure permit easy integration into existing experimentation code.

ADOpy supports Python 3.6 or above and relies on NumPy, SciPy, and Pandas.

Features

  • Grid-based computation of optimal designs using only three classes: adopy.Task, adopy.Model, and adopy.Engine.
  • Easily customizable for your own tasks and models
  • Pre-implemented Task and Model classes including:
    • Psychometric function estimation for 2AFC tasks (adopy.tasks.psi)
    • Delay discounting task (adopy.tasks.ddt)
    • Choice under risk and ambiguity task (adopy.tasks.cra)
  • Example code for experiments using PsychoPy (link)

Installation

# Install from PyPI
pip install adopy

# Install from Github (developmental version)
pip install git+https://github.com/adopy/adopy.git@develop

Resources

Citation

If you use ADOpy, please cite this package along with the specific version. It greatly encourages contributors to continue supporting ADOpy.

Yang, J., Pitt, M. A., Ahn, W., & Myung, J. I. (2020). ADOpy: A Python Package for Adaptive Design Optimization. Behavior Research Methods, 1-24. https://doi.org/10.3758/s13428-020-01386-4

Acknowledgement

The research was supported by National Institute of Health Grant R01-MH093838 to Mark A. Pitt and Jay I. Myung, the Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Science, ICT, & Future Planning (NRF-2018R1C1B3007313 and NRF-2018R1A4A1025891), the Institute for Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2019-0-01367, BabyMind), and the Creative-Pioneering Researchers Program through Seoul National University to Woo-Young Ahn.

References

  • Myung, J. I., Cavagnaro, D. R., and Pitt, M. A. (2013). A tutorial on adaptive design optimization. Journal of Mathematical Psychology, 57, 53–67.

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc