Security News
PyPI’s New Archival Feature Closes a Major Security Gap
PyPI now allows maintainers to archive projects, improving security and helping users make informed decisions about their dependencies.
Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).
ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.
ONNX is a community project and the open governance model is described here. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the Special Interest Groups and Working Groups to shape the future of ONNX.
Check out our contribution guide to get started.
If you think some operator should be added to ONNX specification, please read this document.
The schedules of the regular meetings of the Steering Committee, the working groups and the SIGs can be found here
Community Meetups are held at least once a year. Content from previous community meetups are at:
We encourage you to open Issues, or use Slack (If you have not joined yet, please use this link to join the group) for more real-time discussion.
Stay up to date with the latest ONNX news. [Facebook] [Twitter]
A roadmap process takes place every year. More details can be found here
ONNX released packages are published in PyPi.
pip install onnx # or pip install onnx[reference] for optional reference implementation dependencies
AMD's ONNX weekly packages are published in PyPI to enable experimentation and early testing.
Detailed install instructions, including Common Build Options and Common Errors can be found here
ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest
:
pip install pytest nbval
After installing pytest, use the following command to run tests.
pytest
Check out the contributor guide for instructions.
FAQs
Open Neural Network Exchange
We found that amd-onnx-weekly demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
PyPI now allows maintainers to archive projects, improving security and helping users make informed decisions about their dependencies.
Research
Security News
Malicious npm package postcss-optimizer delivers BeaverTail malware, targeting developer systems; similarities to past campaigns suggest a North Korean connection.
Security News
CISA's KEV data is now on GitHub, offering easier access, API integration, commit history tracking, and automated updates for security teams and researchers.