Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

azureml-ai-monitoring

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

azureml-ai-monitoring

Microsoft Azure Machine Learning Python SDK v2 for collecting model data during operationalization

  • 1.0.0
  • PyPI
  • Socket score

Maintainers
1

Microsoft Azure Machine Learning Data Collection SDK v2 for model monitoring

The azureml-ai-monitoring package provides an SDK to enable Model Data Collector (MDC) for custom logging allows customers to collect data at arbitrary points in their data pre-processing pipeline. Customers can leverage SDK in score.py to log data to desired sink before, during, and after any data transformations.

Quickstart

Start by importing the azureml-ai-monitoring package in score.py

import pandas as pd
import json
from azureml.ai.monitoring import Collector

def init():
  global inputs_collector, outputs_collector

  # instantiate collectors with appropriate names, make sure align with deployment spec
  inputs_collector = Collector(name='model_inputs')                    
  outputs_collector = Collector(name='model_outputs')

def run(data): 
  # json data: { "data" : {  "col1": [1,2,3], "col2": [2,3,4] } }
  pdf_data = preprocess(json.loads(data))
  
  # tabular data: {  "col1": [1,2,3], "col2": [2,3,4] }
  input_df = pd.DataFrame(pdf_data)

  # collect inputs data, store correlation_context
  context = inputs_collector.collect(input_df)

  # perform scoring with pandas Dataframe, return value is also pandas Dataframe
  output_df = predict(input_df) 

  # collect outputs data, pass in correlation_context so inputs and outputs data can be correlated later
  outputs_collector.collect(output_df, context)
  
  return output_df.to_dict()
  
def preprocess(json_data):
  # preprocess the payload to ensure it can be converted to pandas DataFrame
  return json_data["data"]

def predict(input_df):
  # process input and return with outputs
  ...
  
  return output_df

Create environment with base image mcr.microsoft.com/azureml/openmpi4.1.0-ubuntu20.04 and conda dependencies, then build the environment.

channels:
  - conda-forge
dependencies:
  - python=3.8
  - pip=22.3.1
  - pip:
      - azureml-defaults==1.38.0
      - azureml-ai-monitoring
name: model-env

Create deployment with custom logging enabled (model_inputs and model_outputs are enabled) and the environment you just built, please update the yaml according to your scenario.

#source ../configs/model-data-collector/data-storage-basic-OnlineDeployment.YAML
$schema: http://azureml/sdk-2-0/OnlineDeployment.json

endpoint_name: my_endpoint #unchanged
name: blue #unchanged
model: azureml:my-model-m1:1 #azureml:models/<name>:<version> #unchanged
environment: azureml:custom-logging-env@latest #unchanged
data_collector:
  collections:
    model_inputs:
      enabled: 'True'
    model_outputs:
      enabled: 'True'

Configurable error handler

By default, we'll raise the exception when there is unexpected behavior (like custom logging is not enabled, collection is not enabled, not supported data type), if you want a configurable on_error, you can do it with

collector = Collector(name="inputs", on_error=lambda e: logging.info("ex:{}".format(e)))

Change Log

v1.0.0 (2024.4.25)

Announcement

  • Publish official version v1.0.0.

v0.1.0b4 (2023.8.21)

Improvements

  • improve error msg when queue is full.
  • Increase msg queue to handle more requests.

v0.1.0b3 (2023.5.15)

Improvements

  • fix install_requires
  • fix classifiers
  • fix README

v0.1.0b2 (2023.5.9)

New Features

  • Support local capture

v0.1.0b1 (2023.4.25)

New Features

  • Support model data collection for pandas Dataframe.

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc