Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

benchopt

Package Overview
Dependencies
Maintainers
2
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

benchopt

Benchmark toolkit for optimization

  • 1.6.0
  • PyPI
  • Socket score

Maintainers
2

.. image:: https://raw.githubusercontent.com/benchopt/communication_materials/main/posters/images/logo_benchopt.png :width: 350 :align: center

—Making your ML and optimization benchmarks simple and open—


|Test Status| |codecov| |Documentation| |Python 3.6+| |install-per-months| |discord| |SWH|

Benchopt is a benchmarking suite tailored for machine learning workflows. It is built for simplicity, transparency, and reproducibility. It is implemented in Python but can run algorithms written in many programming languages.

So far, benchopt has been tested with Python <https://www.python.org/>, R <https://www.r-project.org/>, Julia <https://julialang.org/>_ and C/C++ <https://isocpp.org/>_ (compiled binaries with a command line interface). Programs available via conda <https://docs.conda.io/en/latest/>_ should be compatible as well. See for instance an example of usage <https://benchopt.github.io/auto_examples/plot_run_benchmark_python_R.html>_ with R.

Install

It is recommended to use benchopt within a conda environment to fully-benefit from benchopt Command Line Interface (CLI).

To install benchopt, start by creating a new conda environment and then activate it

.. code-block:: bash

conda create -n benchopt python
conda activate benchopt

Then run the following command to install the latest release of benchopt

.. code-block:: bash

pip install -U benchopt

It is also possible to use the latest development version. To do so, run instead

.. code-block:: bash

pip install git+https://github.com/benchopt/benchopt.git

Getting started

After installing benchopt, you can

  • replicate/modify an existing benchmark
  • create your own benchmark

Using an existing benchmark ^^^^^^^^^^^^^^^^^^^^^^^^^^^

Replicating an existing benchmark is simple. Here is how to do so for the L2-logistic Regression benchmark <https://github.com/benchopt/benchmark_logreg_l2>_.

  1. Clone the benchmark repository and cd to it

.. code-block:: bash

git clone https://github.com/benchopt/benchmark_logreg_l2 cd benchmark_logreg_l2

  1. Install the desired solvers automatically with benchopt

.. code-block:: bash

benchopt install . -s lightning -s sklearn

  1. Run the benchmark to get the figure below

.. code-block:: bash

benchopt run . --config ./example_config.yml

.. figure:: https://benchopt.github.io/_images/sphx_glr_plot_run_benchmark_001.png :target: how.html :align: center :width: 60%

These steps illustrate how to reproduce the L2-logistic Regression benchmark <https://github.com/benchopt/benchmark_logreg_l2>. Find the complete list of the Available benchmarks. Also, refer to the documentation <https://benchopt.github.io/>_ to learn more about benchopt CLI and its features. You can also easily extend this benchmark by adding a dataset, solver or metric. Learn that and more in the Benchmark workflow <https://benchopt.github.io/benchmark_workflow/index.html>_.

Creating a benchmark ^^^^^^^^^^^^^^^^^^^^

The section Write a benchmark <https://benchopt.github.io/benchmark_workflow/write_benchmark.html>_ of the documentation provides a tutorial for creating a benchmark. The benchopt community also maintains a template benchmark <https://github.com/benchopt/template_benchmark>_ to quickly and easily start a new benchmark.

Finding help

Join benchopt discord server <https://discord.gg/EA2HGQb7nv>_ and get in touch with the community! Feel free to drop us a message to get help with running/constructing benchmarks or (why not) discuss new features to be added and future development directions that benchopt should take.

Citing Benchopt

Benchopt is a continuous effort to make reproducible and transparent ML and optimization benchmarks. Join us in this endeavor! If you use benchopt in a scientific publication, please cite

.. code-block:: bibtex

@inproceedings{benchopt, author = {Moreau, Thomas and Massias, Mathurin and Gramfort, Alexandre and Ablin, Pierre and Bannier, Pierre-Antoine and Charlier, Benjamin and Dagréou, Mathieu and Dupré la Tour, Tom and Durif, Ghislain and F. Dantas, Cassio and Klopfenstein, Quentin and Larsson, Johan and Lai, En and Lefort, Tanguy and Malézieux, Benoit and Moufad, Badr and T. Nguyen, Binh and Rakotomamonjy, Alain and Ramzi, Zaccharie and Salmon, Joseph and Vaiter, Samuel}, title = {Benchopt: Reproducible, efficient and collaborative optimization benchmarks}, year = {2022}, booktitle = {NeurIPS}, url = {https://arxiv.org/abs/2206.13424} }

Available benchmarks

.. list-table:: :widths: 70 15 15 :header-rows: 1

    • Problem
    • Results
    • Build Status
    • Ordinary Least Squares (OLS) <https://github.com/benchopt/benchmark_ols>_
    • Results <https://benchopt.github.io/results/benchmark_ols.html>__
    • |Build Status OLS|
    • Non-Negative Least Squares (NNLS) <https://github.com/benchopt/benchmark_nnls>_
    • Results <https://benchopt.github.io/results/benchmark_nnls.html>__
    • |Build Status NNLS|
    • LASSO: L1-Regularized Least Squares <https://github.com/benchopt/benchmark_lasso>_
    • Results <https://benchopt.github.io/results/benchmark_lasso.html>__
    • |Build Status Lasso|
    • LASSO Path <https://github.com/jolars/benchmark_lasso_path>_
    • Results <https://benchopt.github.io/results/benchmark_lasso_path.html>__
    • |Build Status Lasso Path|
    • Elastic Net <https://github.com/benchopt/benchmark_elastic_net>_
    • |Build Status ElasticNet|
    • MCP <https://github.com/benchopt/benchmark_mcp>_
    • Results <https://benchopt.github.io/results/benchmark_mcp.html>__
    • |Build Status MCP|
    • L2-Regularized Logistic Regression <https://github.com/benchopt/benchmark_logreg_l2>_
    • Results <https://benchopt.github.io/results/benchmark_logreg_l2.html>__
    • |Build Status LogRegL2|
    • L1-Regularized Logistic Regression <https://github.com/benchopt/benchmark_logreg_l1>_
    • Results <https://benchopt.github.io/results/benchmark_logreg_l1.html>__
    • |Build Status LogRegL1|
    • L2-regularized Huber regression <https://github.com/benchopt/benchmark_huber_l2>_
    • |Build Status HuberL2|
    • L1-Regularized Quantile Regression <https://github.com/benchopt/benchmark_quantile_regression>_
    • Results <https://benchopt.github.io/results/benchmark_quantile_regression.html>__
    • |Build Status QuantileRegL1|
    • Linear SVM for Binary Classification <https://github.com/benchopt/benchmark_linear_svm_binary_classif_no_intercept>_
    • |Build Status LinearSVM|
    • Linear ICA <https://github.com/benchopt/benchmark_linear_ica>_
    • |Build Status LinearICA|
    • Approximate Joint Diagonalization (AJD) <https://github.com/benchopt/benchmark_jointdiag>_
    • |Build Status JointDiag|
    • 1D Total Variation Denoising <https://github.com/benchopt/benchmark_tv_1d>_
    • |Build Status TV1D|
    • 2D Total Variation Denoising <https://github.com/benchopt/benchmark_tv_2d>_
    • |Build Status TV2D|
    • ResNet Classification <https://github.com/benchopt/benchmark_resnet_classif>_
    • Results <https://benchopt.github.io/results/benchmark_resnet_classif.html>__
    • |Build Status ResNetClassif|
    • Bilevel Optimization <https://github.com/benchopt/benchmark_bilevel>_
    • Results <https://benchopt.github.io/results/benchmark_bilevel.html>__
    • |Build Status Bilevel|

.. |Test Status| image:: https://github.com/benchopt/benchopt/actions/workflows/test.yml/badge.svg :target: https://github.com/benchopt/benchopt/actions/workflows/test.yml .. |Python 3.6+| image:: https://img.shields.io/badge/python-3.6%2B-blue :target: https://www.python.org/downloads/release/python-360/ .. |Documentation| image:: https://img.shields.io/badge/documentation-latest-blue :target: https://benchopt.github.io .. |codecov| image:: https://codecov.io/gh/benchopt/benchopt/branch/main/graph/badge.svg :target: https://codecov.io/gh/benchopt/benchopt .. |SWH| image:: https://archive.softwareheritage.org/badge/origin/https://github.com/benchopt/benchopt/ :target: https://archive.softwareheritage.org/browse/origin/?origin_url=https://github.com/benchopt/benchopt .. |discord| image:: https://dcbadge.vercel.app/api/server/EA2HGQb7nv?style=flat :target: https://discord.gg/EA2HGQb7nv .. |install-per-months| image:: https://static.pepy.tech/badge/benchopt/month :target: https://pepy.tech/project/benchopt

.. |Build Status OLS| image:: https://github.com/benchopt/benchmark_ols/actions/workflows/main.yml/badge.svg :target: https://github.com/benchopt/benchmark_ols/actions .. |Build Status NNLS| image:: https://github.com/benchopt/benchmark_nnls/actions/workflows/main.yml/badge.svg :target: https://github.com/benchopt/benchmark_nnls/actions .. |Build Status Lasso| image:: https://github.com/benchopt/benchmark_lasso/actions/workflows/main.yml/badge.svg :target: https://github.com/benchopt/benchmark_lasso/actions .. |Build Status Lasso Path| image:: https://github.com/jolars/benchmark_lasso_path/actions/workflows/main.yml/badge.svg :target: https://github.com/benchopt/benchmark_lasso_path/actions .. |Build Status ElasticNet| image:: https://github.com/benchopt/benchmark_elastic_net/actions/workflows/main.yml/badge.svg :target: https://github.com/benchopt/benchmark_elastic_net/actions .. |Build Status MCP| image:: https://github.com/benchopt/benchmark_mcp/actions/workflows/main.yml/badge.svg :target: https://github.com/benchopt/benchmark_mcp/actions .. |Build Status LogRegL2| image:: https://github.com/benchopt/benchmark_logreg_l2/actions/workflows/main.yml/badge.svg :target: https://github.com/benchopt/benchmark_logreg_l2/actions .. |Build Status LogRegL1| image:: https://github.com/benchopt/benchmark_logreg_l1/actions/workflows/main.yml/badge.svg :target: https://github.com/benchopt/benchmark_logreg_l1/actions .. |Build Status HuberL2| image:: https://github.com/benchopt/benchmark_huber_l2/actions/workflows/main.yml/badge.svg :target: https://github.com/benchopt/benchmark_huber_l2/actions .. |Build Status QuantileRegL1| image:: https://github.com/benchopt/benchmark_quantile_regression/actions/workflows/main.yml/badge.svg :target: https://github.com/benchopt/benchmark_quantile_regression/actions .. |Build Status LinearSVM| image:: https://github.com/benchopt/benchmark_linear_svm_binary_classif_no_intercept/actions/workflows/main.yml/badge.svg :target: https://github.com/benchopt/benchmark_linear_svm_binary_classif_no_intercept/actions .. |Build Status LinearICA| image:: https://github.com/benchopt/benchmark_linear_ica/actions/workflows/main.yml/badge.svg :target: https://github.com/benchopt/benchmark_linear_ica/actions .. |Build Status JointDiag| image:: https://github.com/benchopt/benchmark_jointdiag/actions/workflows/main.yml/badge.svg :target: https://github.com/benchopt/benchmark_jointdiag/actions .. |Build Status TV1D| image:: https://github.com/benchopt/benchmark_tv_1d/actions/workflows/main.yml/badge.svg :target: https://github.com/benchopt/benchmark_tv_1d/actions .. |Build Status TV2D| image:: https://github.com/benchopt/benchmark_tv_2d/actions/workflows/main.yml/badge.svg :target: https://github.com/benchopt/benchmark_tv_2d/actions .. |Build Status ResNetClassif| image:: https://github.com/benchopt/benchmark_resnet_classif/actions/workflows/main.yml/badge.svg :target: https://github.com/benchopt/benchmark_resnet_classif/actions .. |Build Status Bilevel| image:: https://github.com/benchopt/benchmark_bilevel/actions/workflows/main.yml/badge.svg :target: https://github.com/benchopt/benchmark_bilevel/actions

BSD 3-Clause License

Copyright (c) 2019–2022 The Benchopt developers. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

a. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

b. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

c. Neither the name of the Benchopt Developers nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc