Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

clipping

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

clipping

Geometries clipping.

  • 6.0.0
  • PyPI
  • Socket score

Maintainers
1

clipping

In what follows python is an alias for python3.6 or pypy3.6 or any later version (python3.7, pypy3.7 and so on).

Installation

Install the latest pip & setuptools packages versions

python -m pip install --upgrade pip setuptools

User

Download and install the latest stable version from PyPI repository

python -m pip install --upgrade clipping

Developer

Download the latest version from GitHub repository

git clone https://github.com/lycantropos/clipping.git
cd clipping

Install dependencies

python -m pip install -r requirements.txt

Install

python setup.py install

Usage

>>> from ground.base import get_context
>>> context = get_context()
>>> EMPTY = context.empty
>>> Mix = context.mix_cls
>>> Multipoint = context.multipoint_cls
>>> Multisegment = context.multisegment_cls
>>> Point = context.point_cls
>>> Segment = context.segment_cls
>>> left_edge = Segment(Point(0, 0), Point(0, 1))
>>> right_edge = Segment(Point(1, 0), Point(1, 1))
>>> bottom_edge = Segment(Point(0, 0), Point(1, 0))
>>> top_edge = Segment(Point(0, 1), Point(1, 1))
>>> main_diagonal = Segment(Point(0, 0), Point(1, 1))
>>> trident = Multisegment([left_edge, main_diagonal, bottom_edge])
>>> square_edges = Multisegment([bottom_edge, right_edge, top_edge, left_edge])
>>> from clipping.planar import intersect_multisegments
>>> (intersect_multisegments(trident, square_edges)
...  == intersect_multisegments(square_edges, trident)
...  == Multisegment([left_edge, bottom_edge]))
True
>>> from clipping.planar import complete_intersect_multisegments
>>> (complete_intersect_multisegments(trident, square_edges)
...  == complete_intersect_multisegments(square_edges, trident)
...  == Mix(Multipoint([Point(1, 1)]), Multisegment([left_edge, bottom_edge]),
...         EMPTY))
True
>>> from clipping.planar import unite_multisegments
>>> (unite_multisegments(trident, square_edges)
...  == unite_multisegments(square_edges, trident)
...  == Multisegment([left_edge, bottom_edge, main_diagonal, top_edge,
...                   right_edge]))
True
>>> from clipping.planar import subtract_multisegments
>>> subtract_multisegments(trident, square_edges) == main_diagonal
True
>>> (subtract_multisegments(square_edges, trident)
...  == Multisegment([top_edge, right_edge]))
True
>>> from clipping.planar import symmetric_subtract_multisegments
>>> (symmetric_subtract_multisegments(trident, square_edges)
...  == symmetric_subtract_multisegments(square_edges, trident)
...  == Multisegment([main_diagonal, top_edge, right_edge]))
True
>>> Contour = context.contour_cls
>>> Multipolygon = context.multipolygon_cls
>>> Polygon = context.polygon_cls
>>> first_square = Contour([Point(0, 0), Point(1, 0), Point(1, 1),
...                         Point(0, 1)])
>>> second_square = Contour([Point(1, 0), Point(2, 0), Point(2, 1),
...                          Point(1, 1)])
>>> third_square = Contour([Point(1, 1), Point(2, 1), Point(2, 2),
...                         Point(1, 2)])
>>> fourth_square = Contour([Point(0, 1), Point(1, 1), Point(1, 2),
...                          Point(0, 2)])
>>> from clipping.planar import intersect_multipolygons
>>> (intersect_multipolygons(Multipolygon([Polygon(first_square, []),
...                                        Polygon(third_square, [])]),
...                          Multipolygon([Polygon(second_square, []),
...                                        Polygon(fourth_square, [])]))
...  is EMPTY)
True
>>> (intersect_multipolygons(Multipolygon([Polygon(first_square, []),
...                                        Polygon(third_square, [])]),
...                          Multipolygon([Polygon(first_square, []),
...                                        Polygon(third_square, [])]))
...  == Multipolygon([Polygon(first_square, []), Polygon(third_square, [])]))
True
>>> from clipping.planar import complete_intersect_multipolygons
>>> (complete_intersect_multipolygons(
...      Multipolygon([Polygon(first_square, []), Polygon(third_square, [])]),
...      Multipolygon([Polygon(second_square, []),
...                    Polygon(fourth_square, [])]))
...  == Multisegment([Segment(Point(0, 1), Point(1, 1)),
...                   Segment(Point(1, 0), Point(1, 1)),
...                   Segment(Point(1, 1), Point(2, 1)),
...                   Segment(Point(1, 1), Point(1, 2))]))
True
>>> (complete_intersect_multipolygons(
...      Multipolygon([Polygon(first_square, []), Polygon(third_square, [])]),
...      Multipolygon([Polygon(first_square, []), Polygon(third_square, [])]))
...  == Multipolygon([Polygon(first_square, []), Polygon(third_square, [])]))
True
>>> from clipping.planar import unite_multipolygons
>>> (unite_multipolygons(Multipolygon([Polygon(first_square, []),
...                                    Polygon(third_square, [])]),
...                      Multipolygon([Polygon(second_square, []),
...                                    Polygon(fourth_square, [])]))
...  == Polygon(Contour([Point(0, 0), Point(2, 0), Point(2, 2), Point(0, 2)]),
...             []))
True
>>> (unite_multipolygons(Multipolygon([Polygon(first_square, []),
...                                    Polygon(third_square, [])]),
...                      Multipolygon([Polygon(first_square, []),
...                                    Polygon(third_square, [])]))
...  == Multipolygon([Polygon(first_square, []), Polygon(third_square, [])]))
True
>>> from clipping.planar import subtract_multipolygons
>>> (subtract_multipolygons(Multipolygon([Polygon(first_square, []),
...                                       Polygon(third_square, [])]),
...                         Multipolygon([Polygon(first_square, []),
...                                       Polygon(third_square, [])]))
...  is EMPTY)
True
>>> (subtract_multipolygons(Multipolygon([Polygon(first_square, []),
...                                       Polygon(third_square, [])]),
...                         Multipolygon([Polygon(second_square, []),
...                                       Polygon(fourth_square, [])]))
...  == Multipolygon([Polygon(first_square, []), Polygon(third_square, [])]))
True
>>> from clipping.planar import symmetric_subtract_multipolygons
>>> (symmetric_subtract_multipolygons(
...      Multipolygon([Polygon(first_square, []), Polygon(third_square, [])]),
...      Multipolygon([Polygon(first_square, []), Polygon(third_square, [])]))
...  is EMPTY)
True
>>> (symmetric_subtract_multipolygons(
...      Multipolygon([Polygon(first_square, []), Polygon(third_square, [])]),
...      Multipolygon([Polygon(second_square, []),
...                    Polygon(fourth_square, [])]))
...  == Polygon(Contour([Point(0, 0), Point(2, 0), Point(2, 2), Point(0, 2)]),
...             []))
True

Development

Bumping version

Preparation

Install bump2version.

Pre-release

Choose which version number category to bump following semver specification.

Test bumping version

bump2version --dry-run --verbose $CATEGORY

where $CATEGORY is the target version number category name, possible values are patch/minor/major.

Bump version

bump2version --verbose $CATEGORY

This will set version to major.minor.patch-alpha.

Release

Test bumping version

bump2version --dry-run --verbose release

Bump version

bump2version --verbose release

This will set version to major.minor.patch.

Running tests

Install dependencies

python -m pip install -r requirements-tests.txt

Plain

pytest

Inside Docker container:

  • with CPython
    docker-compose --file docker-compose.cpython.yml up
    
  • with PyPy
    docker-compose --file docker-compose.pypy.yml up
    

Bash script:

  • with CPython

    ./run-tests.sh
    

    or

    ./run-tests.sh cpython
    
  • with PyPy

    ./run-tests.sh pypy
    

PowerShell script:

  • with CPython
    .\run-tests.ps1
    
    or
    .\run-tests.ps1 cpython
    
  • with PyPy
    .\run-tests.ps1 pypy
    

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc