Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

competitivepython

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

competitivepython

A collection of algorithms for competitive programming

  • 0.1.0
  • PyPI
  • Socket score

Maintainers
1

Competitive Programming Algorithm Library in Python

competitivepython is a library of algorithms and data structures implemented in Python. It is designed to be a useful resource for developers who need to implement common algorithms and data structures in their projects.

Features

  • Implements a wide range of algorithms and data structures, including:
    • Searches: Binary Search, Linear Search, KMP Pattern Search
    • Graphs: BFS, DFS, Dijkstra
    • Sorting: Bubble Sort, Insertion Sort, Shell Sort, Selection Sort, Bucket Sort, Merge Sort, Tim Sort, Quick Sort, Heap Sort, Radix Sort
    • Trees: Binary Search Tree
  • Easy to use and understand, with well-documented code
  • Portable and compatible with Python 3
  • Open source and available under the MIT license

Installation

To install competitivepython library, simply run the following command:

  pip install competitivepython

Usage

To use PyPy in your project, simply import the desired algorithm or data structure and use it as needed. For example:

  • searches implementation example

    from competitivepython import searches
    
    result = searches.binary_search([1, 2, 3, 4, 5], 3)
    result2 = searches.linear_search([5, 7, 9, 2, 4, 10], 4)
    txt = "ABABDABACDABABCABAB"
    pat = "ABABCABAB"
    result3 = searches.kmp_search(pat,txt)
    print(result)  # Output: 2
    print(result2)  # Output: 4
    print(result3) # Output: [10]
    
  • sorting implementation example

    from competitivepython import sorting
    
    arr = [112, 6, 7, 12, 15]
    
    res = sorting.bubble_sort(arr)
    res1 = sorting.bucket_sort(arr)
    res2 = sorting.heap_sort(arr)
    res3 = sorting.insertion_sort(arr)
    res4 = sorting.merge_sort(arr)
    res5 = sorting.quick_sort(arr)
    res6 = sorting.radix_sort(arr)
    res7 = sorting.selection_sort(arr)
    res8 = sorting.shell_sort(arr)
    res9 = sorting.tim_sort(arr)
    
    print('bubble sort:', res, 'bucket sort:', res1, 'heap sort:', res2, 'insertion sort:', res3, 'merge sort:', res4,
        'quick sort:', res5, 'radix sort:', res6, 'selection sort:', res7, 'shell sort:', res8, 'tim sort:', res9)
    
    ''' Output --- 
     bubble sort: [6, 7, 12, 15, 112] bucket sort: [6, 7, 12, 15, 112] heap sort: [6, 7, 12, 15, 112] 
    insertion sort: [6, 7, 12, 15, 112] merge sort: [6, 7, 12, 15, 112] quick sort: [6, 7, 12, 15, 112] 
    radix sort: [6, 7, 12, # 15, 112] selection sort: [6, 7, 12, 15, 112] shell sort: [6, 7, 12, 15, 112] 
    tim sort: [6, 7, 12, 15, 112]
    '''
    
  • graphs implementation example

    from competitivepython import graphs
    
    graph = {
        'A': {'B': 1, 'C': 4},
        'B': {'A': 1, 'C': 2, 'D': 5},
        'C': {'A': 4, 'B': 2, 'D': 1},
        'D': {'B': 5, 'C': 1},
    }
    start = 'A'
    end = 'D'
    
    result = graphs.breadth_first_search(graph, 'C')
    result2 = graphs.depth_first_search(graph, 'C')
    result3 = graphs.dijkstra(graph, start, end)
    print("bfs:",result)
    print("dfs:",result2)
    print("dijikstra:",result3)
    
    ''' Output--
        bfs: {'B', 'D', 'C', 'A'}
        dfs: {'B', 'D', 'C', 'A'}
        dijikstra: {'distance': 4, 'path': ['B', 'C', 'D']}
    '''
    
  • trees implementation example

    from competitivepython import trees
    
    # Create an instance of the BinarySearchTree
    bst = trees.BinarySearchTree()
    
    # Insert some values into the tree
    bst.insert(50)
    bst.insert(30)
    bst.insert(20)
    bst.insert(40)
    bst.insert(70)
    bst.insert(60)
    bst.insert(80)
    
    # Check if a value is present in the tree
    print(bst.search(50)) # Output: True
    print(bst.search(35)) # Output: False
    
    # Get the values in the tree in in-order traversal order
    print(bst.get_in_order_traversal()) # Output: [20, 30, 40, 50, 60, 70, 80]
    

Contributing

If you would like to contribute to the competitivepython project, please refer to the contributing guidelines. We welcome contributions of all types, including bug reports, feature requests, and code contributions.

License

competitivepython is open source software released under the MIT license. Refer to the LICENSE file for more information.

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc