![Oracle Drags Its Feet in the JavaScript Trademark Dispute](https://cdn.sanity.io/images/cgdhsj6q/production/919c3b22c24f93884c548d60cbb338e819ff2435-1024x1024.webp?w=400&fit=max&auto=format)
Security News
Oracle Drags Its Feet in the JavaScript Trademark Dispute
Oracle seeks to dismiss fraud claims in the JavaScript trademark dispute, delaying the case and avoiding questions about its right to the name.
cuDF (pronounced "KOO-dee-eff") is a GPU DataFrame library for loading, joining, aggregating, filtering, and otherwise manipulating data. cuDF leverages libcudf, a blazing-fast C++/CUDA dataframe library and the Apache Arrow columnar format to provide a GPU-accelerated pandas API.
You can import cudf
directly and use it like pandas
:
import cudf
tips_df = cudf.read_csv("https://github.com/plotly/datasets/raw/master/tips.csv")
tips_df["tip_percentage"] = tips_df["tip"] / tips_df["total_bill"] * 100
# display average tip by dining party size
print(tips_df.groupby("size").tip_percentage.mean())
Or, you can use cuDF as a no-code-change accelerator for pandas, using
cudf.pandas
.
cudf.pandas
supports 100% of the pandas API, utilizing cuDF for
supported operations and falling back to pandas when needed:
%load_ext cudf.pandas # pandas operations now use the GPU!
import pandas as pd
tips_df = pd.read_csv("https://github.com/plotly/datasets/raw/master/tips.csv")
tips_df["tip_percentage"] = tips_df["tip"] / tips_df["total_bill"] * 100
# display average tip by dining party size
print(tips_df.groupby("size").tip_percentage.mean())
cudf.pandas
on a free GPU enabled instance on Google Colab!See the RAPIDS install page for the most up-to-date information and commands for installing cuDF and other RAPIDS packages.
cuDF can be installed via pip
from the NVIDIA Python Package Index.
Be sure to select the appropriate cuDF package depending
on the major version of CUDA available in your environment:
For CUDA 11.x:
pip install --extra-index-url=https://pypi.nvidia.com cudf-cu11
For CUDA 12.x:
pip install --extra-index-url=https://pypi.nvidia.com cudf-cu12
cuDF can be installed with conda (via miniforge) from the rapidsai
channel:
conda install -c rapidsai -c conda-forge -c nvidia \
cudf=24.12 python=3.12 cuda-version=12.5
We also provide nightly Conda packages built from the HEAD of our latest development branch.
Note: cuDF is supported only on Linux, and with Python versions 3.10 and later.
See the RAPIDS installation guide for more OS and version info.
See build instructions.
Please see our guide for contributing to cuDF.
FAQs
cuDF - GPU Dataframe
We found that cudf-cu11 demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 3 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Oracle seeks to dismiss fraud claims in the JavaScript trademark dispute, delaying the case and avoiding questions about its right to the name.
Security News
The Linux Foundation is warning open source developers that compliance with global sanctions is mandatory, highlighting legal risks and restrictions on contributions.
Security News
Maven Central now validates Sigstore signatures, making it easier for developers to verify the provenance of Java packages.