Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

datafog

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

datafog

Scan, redact, and manage PII in your documents before they get uploaded to a Retrieval Augmented Generation (RAG) system.

  • 4.0.0
  • PyPI
  • Socket score

Maintainers
1

DataFog logo

Open-source PII Detection & Anonymization.

PyPi Version PyPI pyversions GitHub stars PyPi downloads Discord Code style: black codecov GitHub Issues

Installation

DataFog can be installed via pip:

pip install datafog

CLI

📚 Quick Reference

CommandDescription
scan-textAnalyze text for PII
scan-imageExtract and analyze text from images
redact-textRedact PII in text
replace-textReplace PII with anonymized values
hash-textHash PII in text
healthCheck service status
show-configDisplay current settings
download-modelGet a specific spaCy model
list-spacy-modelsShow available models
list-entitiesView supported PII entities

🔍 Detailed Usage

Scanning Text

To scan and annotate text for PII entities:

datafog scan-text "Your text here"

Example:

datafog scan-text "Tim Cook is the CEO of Apple and is based out of Cupertino, California"

Scanning Images

To extract text from images and optionally perform PII annotation:

datafog scan-image "path/to/image.png" --operations extract

Example:

datafog scan-image "nokia-statement.png" --operations extract

To extract text and annotate PII:

datafog scan-image "nokia-statement.png" --operations scan

Redacting Text

To redact PII in text:

datafog redact-text "Tim Cook is the CEO of Apple and is based out of Cupertino, California"

which should output:

[REDACTED] is the CEO of [REDACTED] and is based out of [REDACTED], [REDACTED]

Replacing Text

To replace detected PII:

datafog replace-text "Tim Cook is the CEO of Apple and is based out of Cupertino, California"

which should return something like:

[PERSON_B86CACE6] is the CEO of [UNKNOWN_445944D7] and is based out of [UNKNOWN_32BA5DCA], [UNKNOWN_B7DF4969]

Note: a unique randomly generated identifier is created for each detected entity

Hashing Text

You can select from SHA256, SHA3-256, and MD5 hashing algorithms to hash detected PII. Currently the hashed output does not match the length of the original entity, for privacy-preserving purposes. The default is SHA256.

datafog hash-text "Tim Cook is the CEO of Apple and is based out of Cupertino, California"

generating an output which looks like this:

5738a37f0af81594b8a8fd677e31b5e2cabd6d7791c89b9f0a1c233bb563ae39 is the CEO of f223faa96f22916294922b171a2696d868fd1f9129302eb41a45b2a2ea2ebbfd and is based out of ab5f41f04096cf7cd314357c4be26993eeebc0c094ca668506020017c35b7a9c, cad0535decc38b248b40e7aef9a1cfd91ce386fa5c46f05ea622649e7faf18fb

Utility Commands

🏥 Health Check
datafog health
⚙️ Show Configuration
datafog show-config
📥 Download Model
datafog download-model en_core_web_sm
📂 Show Model Directory
datafog show-spacy-model-directory en_core_web_sm
📋 List Models
datafog list-spacy-models
🏷️ List Entities
datafog list-entities

⚠️ Important Notes

  • For scan-image and scan-text commands, use --operations to specify different operations. Default is scan.
  • Process multiple images or text strings in a single command by providing multiple arguments.
  • Ensure proper permissions and configuration of the DataFog service before running commands.

💡 Tip: For more detailed information on each command, use the --help option, e.g., datafog scan-text --help.

Python SDK

Getting Started

To use DataFog, you'll need to create a DataFog client with the desired operations. Here's a basic setup:

from datafog import DataFog

# For text annotation
client = DataFog(operations="scan")

# For OCR (Optical Character Recognition)
ocr_client = DataFog(operations="extract")

Text PII Annotation

Here's an example of how to annotate PII in a text document:

import requests

# Fetch sample medical record
doc_url = "https://gist.githubusercontent.com/sidmohan0/b43b72693226422bac5f083c941ecfdb/raw/b819affb51796204d59987893f89dee18428ed5d/note1.txt"
response = requests.get(doc_url)
text_lines = [line for line in response.text.splitlines() if line.strip()]

# Run annotation
annotations = client.run_text_pipeline_sync(str_list=text_lines)
print(annotations)

OCR PII Annotation

For OCR capabilities, you can use the following:

import asyncio
import nest_asyncio

nest_asyncio.apply()


async def run_ocr_pipeline_demo():
    image_url = "https://s3.amazonaws.com/thumbnails.venngage.com/template/dc377004-1c2d-49f2-8ddf-d63f11c8d9c2.png"
    results = await ocr_client.run_ocr_pipeline(image_urls=[image_url])
    print("OCR Pipeline Results:", results)


loop = asyncio.get_event_loop()
loop.run_until_complete(run_ocr_pipeline_demo())

Note: The DataFog library uses asynchronous programming for OCR, so make sure to use the async/await syntax when calling the appropriate methods.

Text Anonymization

DataFog provides various anonymization techniques to protect sensitive information. Here are examples of how to use them:

Redacting Text

To redact PII in text:

from datafog import DataFog
from datafog.config import OperationType

client = DataFog(operations=[OperationType.SCAN, OperationType.REDACT])

text = "Tim Cook is the CEO of Apple and is based out of Cupertino, California"
redacted_text = client.run_text_pipeline_sync([text])[0]
print(redacted_text)

Output:

[REDACTED] is the CEO of [REDACTED] and is based out of [REDACTED], [REDACTED]

Replacing Text

To replace detected PII with unique identifiers:

from datafog import DataFog
from datafog.config import OperationType

client = DataFog(operations=[OperationType.SCAN, OperationType.REPLACE])

text = "Tim Cook is the CEO of Apple and is based out of Cupertino, California"
replaced_text = client.run_text_pipeline_sync([text])[0]
print(replaced_text)

Output:

[PERSON_B86CACE6] is the CEO of [UNKNOWN_445944D7] and is based out of [UNKNOWN_32BA5DCA], [UNKNOWN_B7DF4969]

Hashing Text

To hash detected PII:

from datafog import DataFog
from datafog.config import OperationType
from datafog.models.anonymizer import HashType

client = DataFog(operations=[OperationType.SCAN, OperationType.HASH], hash_type=HashType.SHA256)

text = "Tim Cook is the CEO of Apple and is based out of Cupertino, California"
hashed_text = client.run_text_pipeline_sync([text])[0]
print(hashed_text)

Output:

5738a37f0af81594b8a8fd677e31b5e2cabd6d7791c89b9f0a1c233bb563ae39 is the CEO of f223faa96f22916294922b171a2696d868fd1f9129302eb41a45b2a2ea2ebbfd and is based out of ab5f41f04096cf7cd314357c4be26993eeebc0c094ca668506020017c35b7a9c, cad0535decc38b248b40e7aef9a1cfd91ce386fa5c46f05ea622649e7faf18fb

You can choose from SHA256 (default), SHA3-256, and MD5 hashing algorithms by specifying the hash_type parameter

Examples

For more detailed examples, check out our Jupyter notebooks in the examples/ directory:

  • text_annotation_example.ipynb: Demonstrates text PII annotation
  • image_processing.ipynb: Shows OCR capabilities and text extraction from images

These notebooks provide step-by-step guides on how to use DataFog for various tasks.

Dev Notes

For local development:

  1. Clone the repository.
  2. Navigate to the project directory:
    cd datafog-python
    
  3. Create a new virtual environment (using .venv is recommended as it is hardcoded in the justfile):
    python -m venv .venv
    
  4. Activate the virtual environment:
    • On Windows:
      .venv\Scripts\activate
      
    • On macOS/Linux:
      source .venv/bin/activate
      
  5. Install the package in editable mode:
    pip install -r requirements-dev.txt
    
  6. Set up the project:
    just setup
    

Now, you can develop and run the project locally.

Important Actions:
  • Format the code:
    just format
    
    This runs isort to sort imports.
  • Lint the code:
    just lint
    
    This runs flake8 to check for linting errors.
  • Generate coverage report:
    just coverage-html
    
    This runs pytest and generates a coverage report in the htmlcov/ directory.

We use pre-commit to run checks locally before committing changes. Once installed, you can run:

pre-commit run --all-files
Dependencies

For OCR, we use Tesseract, which is incorporated into the build step. You can find the relevant configurations under .github/workflows/ in the following files:

  • dev-cicd.yml
  • feature-cicd.yml
  • main-cicd.yml

Testing

  • Python 3.10

License

This software is published under the MIT license.

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc