dedoc-utils
This library contains useful utilities for automatic document images processing:
- Preprocessing
- binarization
- skew correction
- Text detection
- Line segmentation
- Text recognition
Installation
The library requires Tesseract OCR to be installed.
To install the library use the following command:
pip install dedoc-utils
It's supposed that you already have torch
and torchvision
installed.
If not you can use the following command for installation:
pip install "dedoc-utils[torch]"
If you cloned the repository, you can install the dependencies via pip
:
pip install .
To install torch
packages use:
pip install ."[torch]"
Basic usage
Using preprocessors
from dedocutils.preprocessing import AdaptiveBinarizer, SkewCorrector
import cv2
import matplotlib.pyplot as plt
binarizer = AdaptiveBinarizer()
skew_corrector = SkewCorrector()
image = cv2.imread("examples/before_preprocessing.jpg")
binarized_image, _ = binarizer.preprocess(image)
preprocessed_image, _ = skew_corrector.preprocess(binarized_image)
fig = plt.figure(figsize=(10, 7))
rows, columns = 1, 3
fig.add_subplot(rows, columns, 1)
plt.imshow(image)
plt.axis('off')
plt.title("Before preprocessing")
fig.add_subplot(rows, columns, 2)
plt.imshow(binarized_image)
plt.axis('off')
plt.title("After binarization")
fig.add_subplot(rows, columns, 3)
plt.imshow(preprocessed_image)
plt.axis('off')
plt.title("After preprocessing")
Using text detectors
from dedocutils.text_detection import DoctrTextDetector
text_detector = DoctrTextDetector()
bboxes = text_detector.detect(preprocessed_image)
for bbox in bboxes[:5]:
print(bbox)
BBox(x_top_left=2415, y_top_left=3730, width=202, height=97)
BBox(x_top_left=790, y_top_left=3613, width=383, height=105)
BBox(x_top_left=1690, y_top_left=3488, width=407, height=104)
BBox(x_top_left=2171, y_top_left=3488, width=377, height=92)
BBox(x_top_left=885, y_top_left=3505, width=27, height=50)
Using text recognizers
from dedocutils.text_recognition import TesseractTextRecognizer
text_recognizer = TesseractTextRecognizer()
for bbox in bboxes[:10]:
word_image = preprocessed_image[bbox.y_top_left:bbox.y_bottom_right, bbox.x_top_left:bbox.x_bottom_right]
text = text_recognizer.recognize(word_image, parameters=dict(language="eng"))
print(text)
Fie-
afjefjores.
coluntur,
dicuntur
delubro
eodem
dii
in
plures
Using line segmenters
In the previous example, the order of the recognized words isn't the same
as the order of the words in the document.
It happens because of undetermined work of the text detector.
In this case, one may use line segmenter to sort bboxes from the text detector.
from dedocutils.line_segmentation import ClusteringLineSegmenter
line_segmenter = ClusteringLineSegmenter()
sorted_bboxes = line_segmenter.segment(bboxes)
for bbox in sorted_bboxes[1]:
word_image = preprocessed_image[bbox.y_top_left:bbox.y_bottom_right, bbox.x_top_left:bbox.x_bottom_right]
text = text_recognizer.recognize(word_image, parameters=dict(language="eng"))
print(text)
gentes,
fimul.
obibant
munera
fumma
facra,