![Oracle Drags Its Feet in the JavaScript Trademark Dispute](https://cdn.sanity.io/images/cgdhsj6q/production/919c3b22c24f93884c548d60cbb338e819ff2435-1024x1024.webp?w=400&fit=max&auto=format)
Security News
Oracle Drags Its Feet in the JavaScript Trademark Dispute
Oracle seeks to dismiss fraud claims in the JavaScript trademark dispute, delaying the case and avoiding questions about its right to the name.
Name | Downloads | Version | Platforms |
---|---|---|---|
DeepForest is a python package for training and predicting ecological objects in airborne imagery. DeepForest currently comes with a tree crown object detection model and a bird detection model. Both are single class modules that can be extended to species classification based on new data. Users can extend these models by annotating and training custom models.
DeepForest is documented on readthedocs
DeepForest uses deep learning object detection networks to predict bounding boxes corresponding to individual trees in RGB imagery. DeepForest is built on the object detection module from the torchvision package and designed to make training models for detection simpler.
For more about the motivation behind DeepForest, see some recent talks we have given on computer vision for ecology and practical applications to machine learning in environmental monitoring.
Given the enormous array of forest types and image acquisition environments, it is unlikely that your image will be perfectly predicted by a prebuilt model. Below are some tips and some general guidelines to improve predictions.
Get suggestions on how to improve a model by using the discussion board. Please be aware that only feature requests or bug reports should be posted on the issues page.
We welcome pull requests for any issue or extension of the models. Please follow the developers guide.
Free software: MIT license
Remote sensing can transform the speed, scale, and cost of biodiversity and forestry surveys. Data acquisition currently outpaces the ability to identify individual organisms in high-resolution imagery. Individual crown delineation has been a long-standing challenge in remote sensing, and available algorithms produce mixed results. DeepForest is the first open-source implementation of a deep learning model for crown detection. Deep learning has made enormous strides in a range of computer vision tasks but requires significant amounts of training data. By including a trained model, we hope to simplify the process of retraining deep learning models for a range of forests, sensors, and spatial resolutions.
Most usage of DeepForest should cite two papers.
The first is the DeepForest paper, which describes the package:
The second is the paper describing the model.
For the tree detection model cite:
For the bird detection model cite:
FAQs
Tree crown prediction using deep learning retinanets
We found that deepforest demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 3 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Oracle seeks to dismiss fraud claims in the JavaScript trademark dispute, delaying the case and avoiding questions about its right to the name.
Security News
The Linux Foundation is warning open source developers that compliance with global sanctions is mandatory, highlighting legal risks and restrictions on contributions.
Security News
Maven Central now validates Sigstore signatures, making it easier for developers to verify the provenance of Java packages.