Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

dirtyjson

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

dirtyjson

JSON decoder for Python that can extract data from the muck

  • 1.0.8
  • PyPI
  • Socket score

Maintainers
1

dirtyjson --- JSON decoder

.. dirtyjson Decode JSON data from dirty files. .. Scott Maxwell scott@codecobblers.com

JSON (JavaScript Object Notation) http://json.org is a subset of JavaScript syntax (ECMA-262 3rd edition) used as a lightweight data interchange format.

dirtyjson is a JSON decoder meant for extracting JSON-type data from .js files. The returned data structure includes information about line and column numbers, so you can output more useful error messages. The input can also include single quotes, line comments, inline comments, dangling commas, unquoted single-word keys, and hexadecimal and octal numbers.

The goal of dirtyjson is to read JSON objects out of files that are littered with elements that do not fit the official JSON standard. By providing line and column number contexts, a dirty JSON file can be used as source input for a complex data parser or compiler.

dirtyjson exposes an API familiar to users of the standard library marshal and pickle modules. However, dirtyjson provides only the load(s) capability. To write JSON, use either the standard json library or simplejson.

.. note::

The code for dirtyjson is a fairly drastically rewritten version of the loader in simplejson so thanks go to Bob Ippolito of the simplejson project for providing such a nice starting point.

Development of dirtyjson happens on Github: https://github.com/codecobblers/dirtyjson

Decoding JSON and getting position information::

>>> import dirtyjson
>>> obj = [u'foo', {u'bar': [u'baz', None, 1.0, 2]}]
>>> d = dirtyjson.loads("""["foo", /* not fu*/ {bar: ['baz', null, 1.0, 2,]}] and then ignore this junk""")
>>> d == obj
True
>>> pos = d.attributes(0)  # line/column position of first element in array
>>> pos.line == 1
True
>>> pos.column == 2
True
>>> pos = d[1].attributes('bar')  # line/column position of 'bar' key/value pair
>>> pos.key.line == 1
True
>>> pos.key.column == 22
True
>>> pos.value.line == 1
True
>>> pos.value.column == 27
True

Decoding unicode from JSON::

>>> dirtyjson.loads('"\\"foo\\bar"') == u'"foo\x08ar'
True

Decoding JSON from streams::

>>> from dirtyjson.compat import StringIO
>>> io = StringIO('["streaming API"]')
>>> dirtyjson.load(io)[0] == 'streaming API'
True

Using Decimal instead of float::

>>> import dirtyjson
>>> from decimal import Decimal
>>> dirtyjson.loads('1.1', parse_float=Decimal) == Decimal('1.1')
True

Basic Usage

load(fp[, encoding[, parse_float[, parse_int[, parse_constant[, search_for_first_object]]]]])

Performs the following translations in decoding by default:

+---------------+-------------------------+ | JSON | Python | +===============+=========================+ | object | AttributedDict | +---------------+-------------------------+ | array | AttributedList | +---------------+-------------------------+ | string | unicode | +---------------+-------------------------+ | number (int) | int, long | +---------------+-------------------------+ | number (real) | float | +---------------+-------------------------+ | true | True | +---------------+-------------------------+ | false | False | +---------------+-------------------------+ | null | None | +---------------+-------------------------+

It also understands NaN, Infinity, and -Infinity as their corresponding float values, which is outside the JSON spec.

Deserialize fp (a .read()-supporting file-like object containing a JSON document) to a Python object. dirtyjson.Error will be raised if the given document is not valid.

If the contents of fp are encoded with an ASCII based encoding other than UTF-8 (e.g. latin-1), then an appropriate encoding name must be specified. Encodings that are not ASCII based (such as UCS-2) are not allowed, and should be wrapped with codecs.getreader(fp)(encoding), or simply decoded to a unicode object and passed to loads. The default setting of 'utf-8' is fastest and should be using whenever possible.

If fp.read() returns str then decoded JSON strings that contain only ASCII characters may be parsed as str for performance and memory reasons. If your code expects only unicode the appropriate solution is to wrap fp with a reader as demonstrated above.

parse_float, if specified, will be called with the string of every JSON float to be decoded. By default, this is equivalent to float(num_str). This can be used to use another datatype or parser for JSON floats (e.g. decimal.Decimal).

parse_int, if specified, will be called with the int of the string of every JSON int to be decoded. By default, this is equivalent to int(num_str). This can be used to use another datatype or parser for JSON integers (e.g. float).

.. note::

  Unlike the standard `json` module, `dirtyjson` always does
  ``int(num_str, 0)`` before passing through to the converter passed is as
  the *parse_int* parameter. This is to enable automatic handling of hex
  and octal numbers.

parse_constant, if specified, will be called with one of the following strings: true, false, null, '-Infinity', 'Infinity', 'NaN'. This can be used to raise an exception if invalid JSON numbers are encountered or to provide alternate values for any of these constants.

search_for_first_object, if True, will cause the parser to search for the first occurrence of either { or [. This is very useful for reading an object from a JavaScript file.

loads(s[, encoding[, parse_float[, parse_int[, parse_constant[, search_for_first_object[, start_index]]]]])

Deserialize s (a str or unicode instance containing a JSON document) to a Python object. dirtyjson.Error will be raised if the given JSON document is not valid.

If s is a str instance and is encoded with an ASCII based encoding other than UTF-8 (e.g. latin-1), then an appropriate encoding name must be specified. Encodings that are not ASCII based (such as UCS-2) are not allowed and should be decoded to unicode first.

If s is a str then decoded JSON strings that contain only ASCII characters may be parsed as str for performance and memory reasons. If your code expects only unicode the appropriate solution is decode s to unicode prior to calling loads.

start_index, if non-zero, will cause the parser to start processing from the specified offset, while maintaining the correct line and column numbers. This is very useful for reading an object from the middle of a JavaScript file.

The other arguments have the same meaning as in load.

Exceptions

dirtyjson.Error(msg, doc, pos)

Subclass of `ValueError` with the following additional attributes:

msg

    The unformatted error message

doc

    The JSON document being parsed

pos

    The start index of doc where parsing failed

lineno

    The line corresponding to pos

colno

    The column corresponding to pos

AttributedDict and AttributedList

The dirtyjson module uses AttributedDict and AttributedList instead of dict and list. Each is actually a subclass of its base type (dict or list) and can be used as if they were the standard class, but these have been enhanced to store attributes with each element. We use those attributes to store line and column numbers. You can use that information to refer users back to the exact location in the original source file.

Position()

This is a very simple utility class that contains line and column. It is used for storing the position attributes for AttributedList and KeyValuePosition

KeyValuePosition()

This is another very simple utility class that contains key and value. Each of those is a Position object specifying the location in the original source string/file of the key and value. It is used for storing the position attributes for AttributedDict.

AttributedDict()

A subclass of dict that behaves exactly like a dict except that it maintains order like an OrderedDict and allows storing attributes for each key/value pair.

add_with_attributes(self, key, value, attributes)

  Set the *key* in the underlying ``dict`` to the *value* and also store
  whatever is passed in as *attributes* for later retrieval. In our case,
  we store `KeyValuePosition`.

attributes(self, key)

  Return the attributes associated with the specified *key* or ``None`` if
  no attributes exist for the key. In our case, we store
  `KeyValuePosition`. Retrieve position info like this::

     pos = d.attributes(key)
     key_line = pos.key.line
     key_column = pos.key.column
     value_line = pos.value.line
     value_column = pos.value.column

AttributedList()

A subclass of list that behaves exactly like a list except that it allows storing attributes for each value.

append(self, value, attributes=None):

  Appends *value* to the list and *attributes* to the associated location.
  In our case, we store `Position`.

attributes(self, index)

  Returns the attributes for the value at the given *index*. In our case,
  we store `Position`. Retrieve position info like this::

     pos = l.attributes(index)
     value_line = pos.line
     value_column = pos.column

.. note::

  This class is *NOT* robust. If you insert or delete items, the attributes
  will get out of sync. Making this a non-naive class would be a nice
  enhancement.

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc