Research
Security News
Malicious npm Package Targets Solana Developers and Hijacks Funds
A malicious npm package targets Solana developers, rerouting funds in 2% of transactions to a hardcoded address.
Dead simple RDBMS handling library
Dead simple SQL generation and result handling library. Designed to work with Python DB API 2 compatible database connection objects.
Install with::
pip install dsql
You can use dsql
in two ways. First case is SQL statement generation::
>>> from dsql import buildquery
>>> buildquery('select',
'people',
['name', 'surname'],
where=[{'age >': 30}],
orderby='-age',
dialect='postgresql')
(
'SELECT "name", "surname" FROM "people" WHERE "age" > %s ORDER BY "age" DESC',
[30]
)
Second use case is to create a manager object that, in addition to generating your statements, automatically executes them and handles the results for you::
>>> import psycopg2
>>> from psycopg2.extras import DictCursor
>>> from dsql import makemanager
>>> conn = psycopg2.connect(database='foo', cursor_factory=DictCursor)
>>> db = dsql.makemanager(conn, dialect='postgresql')
>>> itemiter = db.select('products', where=[{'color =': 'red'}])
>>> itemiter.next()
{
'id': 1,
'title': 'Shirt',
'color': 'red'
}
>>> db.insert('products', [{'title': 'Pants', 'color': 'green'},
>>> {'title': 'Socks', 'color': 'yellow'}])
[2, 3]
Note that it is required to configure the connection to return DictCursors instead of standard cursors, as in the example above.
Check out the reference section below for the documentation of the whole API.
Installation::
pip install dsql
Reference
Check out::
# Query Builder
query, params = dsql.buildquery(operation, tablename,
<depends-on-the-operation>, ...
dialect='standard')
query, params = dsql.buildquery('select', tablename, fieldlist=[],
where=[], groupby=[], having=[],
orderby=[], limit=0, offset=0,
dialect='standard')
query, params = dsql.buildquery('insert', tablename, recordlist,
dialect='standard')
query, params = dsql.buildquery('update', tablename, updates, where=[],
orderby=[], limit=0, offset=0,
dialect='standard')
query, params = dsql.buildquery('delete', tablename, where=[], orderby=[],
dialect='standard')
query, params = dsql.buildquery('raw', query, params)
# Manager
db = dsql.makemanager(dbapi2_compatible_connection_object,
dialect='standard')
itemiter = db.select(tablename, fieldlist=[], where=[], groupby=[],
having=[], orderby=[], limit=1, offset=0, commit=True,
dry_run=False, response_handler=None)
list_of_inserted_ids = db.insert(tablename, recordlist, commit=True,
dry_run=False, response_handler=None)
number_of_affected_rows = db.update(tablename, updates, where=[],
orderby=[], limit=0, offset=0,
commit=True, dry_run=False,
response_handler=None)
number_of_affected_rows = db.delete(tablename, where=[], orderby=[],
commit=True, dry_run=False,
response_handler=None)
mixed = db.raw(query, params, commit=True, dry_run=False,
response_handler=None)
# return value of this one depends on the type of query.
related_connection_object = db.conn
Documentation of common parameters:
fieldlist
List of fields, such as ['name', 'age', 'occupation']
. Pass an empty list, or
skip altogether, to get all the fields.
where
List of condition groups.
Each condition group is a dict of predicate and value pairs, such as: {'name =': 'John', 'age >': 30}
. Each pair is combined with AND
, so this example is
translated to the template "name" = %s AND "age" > %s
and values of ['John', 30]
.
Condition groups themselves are combined with OR
, so the following where
expression::
[{'name =': 'John', 'age >': 30}, {'occupation in': ['engineer', 'artist']}]
Translates to::
WHERE ("name" = %s AND age > %s) OR (occupation IN (%s, %s))
with the values of: ['John', 30, 'engineer', 'artist']
All standard comparison operators along with LIKE
, NOT LIKE
, IN
and NOT IN
are supported.
If you need to construct more complicated filters, try raw queries.
groupby
List of group fields, such as ['age', 'occupation']
having
Same as where
.
orderby
List of fields to order by. Add the -
prefix to field names for descending
order. Example: ['age', '-net_worth']
limit
Limit as an integer, such as 50
.
offset
Offset as an integer, such as 200
.
dialect
standard
, postgresql
or mysql
.
commit
Automatically commit the query. If you choose not to commit, you can always get
the connection object from the manager object (via manager.conn
) and make the
commit yourself when the time is right.
dry_run
True
or False
. If True
, does not execute the query, but dump it to the
standard error for inspecting.
response_handler
By default, the manager object handles the responses for you. It returns an
iterator of records for select calls, list of last inserted ids for insert
calls, and number of affected rows for others. In the cases you want to handle
the response yourself, you can pass your own response_handler
whose arguments
will be the cursor object and the current dialect. Example::
value_of_custom_handler = manager.select(tablename, limit=10,
response_handler=custom_handler)
Examples
PosgreSQL with psycopg2::
import psycopg2
import psycopg2.extras
import dsql
conn = psycopg2.connect(host='localhost', user='root', database='lorem',
cursor_factory=psycopg2.extras.DictCursor)
db = dsql.makemanager(conn, dialect='postgresql')
itemiter = db.select('products', ['id', 'name', 'description'])
item = itemiter.next()
print item['name']
...
MySQL with MySQLdb::
import MySQLdb
import MySQLdb.cursors
import dsql
conn = MySQLdb.connect(host='localhost', user='root', db='lorem',
cursorclass=MySQLdb.cursors.DictCursor)
db = dsql.makemanager(conn, dialect='mysql')
itemiter = db.select('products',
['id', 'name', 'description'],
where=[{'status =': 'in stock'}])
item = itemiter.next()
print item['name']
last_insert_ids = db.insert('products',
[
{
'name': 'foo',
'description': 'what a product!',
}
])
last_insert_ids = db.insert('products',
[
{
'name': 'foo',
'description': 'what a product!',
}
],
commit=False)
db.conn.commit()
affected_rowcount = db.update('products',
{'name': 'lorem ipsum'},
where=[{'id =': 888}])
affected_rowcount = db.delete('products', where=[{'id =': 777}])
FAQs
Dead simple RDBMS handling lib
We found that dsql demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
A malicious npm package targets Solana developers, rerouting funds in 2% of transactions to a hardcoded address.
Security News
Research
Socket researchers have discovered malicious npm packages targeting crypto developers, stealing credentials and wallet data using spyware delivered through typosquats of popular cryptographic libraries.
Security News
Socket's package search now displays weekly downloads for npm packages, helping developers quickly assess popularity and make more informed decisions.