dummy_file_generator
version 1.1.21
Dummy .csv, flat text or json files generator written in Python 3.7

This tool is able to generate dummy csv, flat text or json files based on the configuration settings you setup for your project(s).
How to install and run the tool as CLI
One common usage scenario can be load / stress / performance testing of file-processing data tools, allowing you to generate the files needed from a command line.
To install:
git clone https://github.com/datahappy1/dummy_file_generator c:\dummy_file_generator\
- Set PYTHONPATH to c:\dummy_file_generator\ tutorial
To run:
The CLI tool needs these MANDATORY arguments defining:
- projectname
--projectname
or -pn
based on the projectname, the dummy file project specific settings from dummy_file_generator/configs/config.json
file are loaded ,
- absolutepath
--generated_file_path
or -gp
defining the full output file path to the file you are about to generate
Provided arguments have higher precedence than fallback values in settings.py
The CLI tool can further consume these OPTIONAL arguments defining:
- filesize
--filesize
or -fs
defining the desired size (in kBs) of the output file
- rowcount
--rowcount
or -rc
defining the desired row count of the output file
Note if you do NOT specify the filesize and do NOT specify the rowcount, the default row_count
value from
settings.py
will be used ( or the value you provide in the default_rowcount
optional argument)
The CLI tool also supports these OPTIONAL arguments that can be used to override values in settings.py
:
- logging_level
--logging_level
or -ll
defining the Python logging level
- default_rowcount
--default_rowcount
or -drc
defining the rowcount fallback value when neither row_count,neither file_size set
- file_encoding
--file_encoding
or -fen
defining the generated files encoding
- file_line_ending
--file_line_ending
or -fle
defining the file line ending
These two OPTIONAL arguments are typically needed when running the tool as an imported package, but you can use them even with
this tool running as CLI:
- data_files_location
--data_files_location
or -dfl
defining the path to the source .txt data files
- config_json_path
--config_json_path
or -cjp
defining the custom path to your config.json file
Example how to run the tool with the -fs argument to set the desired filesize of 256 kB :
cd c:\dummy_file_generator\dummy_file_generator
python c:\dummy_file_generator\dummy_file_generator\__main__.py -pn dummy1 -gp c:\myfiles\dummy1file.csv -fs 256
Example how to run the tool with the -rc argument to set the desired rowcount of 1000 rows :
cd c:\dummy_file_generator\dummy_file_generator
python c:\dummy_file_generator\dummy_file_generator\__main__.py -pn dummy1 -gp c:\myfiles\dummy1file.csv -rc 1000
How to install and run the tool as an imported package
One common usage scenario can be load / stress / performance testing of file-processing data tools, where you can generate dummy text files during the test fixtures / setup.
To install:
pip install dummy-file-generator
You are strongly encouraged to use the Python virtual environment or Pipenv
To run:
The dummy file generator imported package needs these MANDATORY arguments defining:
- projectname
--projectname
or -pn
, based on the project name, the dummy file specific settings from config.json
file are loaded
- generated_file_path
--generated_file_path
or gp
defining the full output file path to the file you are about to generate
Provided arguments have higher precedence than fallback values in settings.py
The dummy file generator imported package can further consume these OPTIONAL arguments defining:
- filesize
--filesize
or -fs
defining the desired size (in kBs) of the output file
- rowcount
--rowcount
or -rc
defining the desired row count of the output file
Note if you do NOT specify the filesize and do NOT specify the rowcount, the DEFAULT_ROW_COUNT
value from
settings.py
will be used ( you can override the DEFAULT_ROW_COUNT
value in settings.py
using the default_rowcount
optional argument)
- data_files_location
--data_files_location
or -dfl
defining the path to the source .txt data files
- config_json_path
--config_json_path
or -cjp
defining the custom path to your config.json
file
- logging_level
--logging_level
or -ll
defining the Python logging level
- default_rowcount
--default_rowcount
or -drc
defining the rowcount fallback value when neither row_count,neither file_size set
- file_encoding
--file_encoding
or -fen
defining the generated files encoding
- file_line_ending
--file_line_ending
or -fle
defining the file line ending
In the example below, project_scope_kwargs
arguments project_name
, data_files_location
, config_json_path
and default_rowcount
are used
to instantiate a DummyFileGenerator class instance.
file_scope_kwargs
arguments generated_file_path
, file_size
, file_encoding
and file_line_ending
are used to setup the generated file properties.
Once there is a instance of DummyFileGenerator, you can use it to generate as many files as needed while only using
the write_output_file
method and it's specific file_scope_kwargs
arguments
Example how to run :
from dummy_file_generator import DummyFileGenerator as Dfg, DummyFileGeneratorException
logging_level = "INFO"
project_scope_kwargs = {
"project_name": "dummy1",
"data_files_location": "c:\\dfg_files\my_data_files",
"config_json_path": "c:\\dfg_files\my_configs\config.json",
"default_rowcount": None,
}
try:
dfg = Dfg(logging_level, **project_scope_kwargs)
except DummyFileGeneratorException as DFG_ERR:
raise DFG_ERR
file_scope_kwargs = {
"generated_file_path": "C:\dfg\\bin\\file1.csv",
"file_size": 1024,
#"row_count": 1000,
"file_encoding": "utf8",
"file_line_ending": "\n",
}
try:
dfg.write_output_file(**file_scope_kwargs)
except DummyFileGeneratorException as DFG_ERR:
raise DFG_ERR
How to setup a new dummy file generator project
You need to generate dummy files based on the content of the text files in your data_files
folder, and these source text files need to have this plain text format:

This tool picks random item from each of the files configured for your project in config.json and uses these values to populate the data for "columns" for each written row.
- How to generate a .csv file
If you need to generate a dummy .csv file containing 3 columns for Names, Dates and IDs,
the project JSON object in your config.json would need to be setup like:
{
"project_name":"dummy1",
"file_type":"csv",
"header":true,
"csv_value_separator": ",",
"csv_quoting": "ALL",
"csv_quote_char": "'",
"csv_escape_char": "\\",
"columns":[
{
"column_name":"Name",
"datafile":"first_names.txt"
},
{
"column_name":"Date",
"datafile":"dates.txt"
},
{
"column_name":"ID",
"datafile":"ids.txt"
}
]
}
This configuration generates a file like this sample:
'Name','Date','ID'
'Hank','2004-05-22','23432'
'Joe','2000-03-12','445'
- How to generate a .txt flat file:
If you need to generate a dummy .txt flat file containing 3 columns for Names, Dates and IDs with specific column lengths defined,
the "project" JSON object in your config.json would need to be setup like:
{
"project_name":"dummy2",
"file_type":"flat",
"header":true,
"columns":[
{
"column_name":"Name",
"column_len":10,
"datafile":"first_names.txt"
},
{
"column_name":"Date",
"column_len":12,
"datafile":"dates.txt"
},
{
"column_name":"ID",
"column_len":9,
"datafile":"ids.txt"
}
]
}
This configuration generates a file like this sample:
Name Date ID
Hank 2004-05-22 23432
Joe 2000-03-12 445
- How to generate a .json file:
If you need to generate a dummy .json file containing 3 columns for Names, Dates and IDs,
the "project" JSON object in your config.json would need to be setup like:
{
"project_name":"dummy3",
"file_type":"json",
"columns":[
{
"column_name":"Name",
"datafile":"first_names.txt"
},
{
"column_name":"Date",
"datafile":"dates.txt"
},
{
"column_name":"ID",
"datafile":"ids.txt"
}
]
}
This configuration generates a file like this sample:
[{"Name": "Hank", "Date": "2004-05-22", "ID": "23432"},
{"Name": "Joe", "Date": "2000-03-12", "ID": "445"}]
If you need to generate a more complex dummy .json file containing 3 columns for Names, Dates, IDs
and an array-like column Identifiers containing one IDs array element and an object containing ID1 and ID2 attributes,
the "project" JSON object in your config.json would need to be setup like:
{
"project_name": "dummy4",
"file_type": "json",
"columns": [
{
"column_name": "Name",
"datafile": "first_names.txt"
},
{
"column_name": "Date",
"datafile": "dates.txt"
},
{
"column_name": "ID",
"datafile": "ids.txt"
},
{
"column_name": "Identifiers",
"__array_columns": [
{
"datafile": "ids.txt"
},
{
"columns": [
{
"column_name": "ID1",
"datafile": "ids.txt"
},
{
"column_name": "ID2",
"datafile": "ids.txt"
}
]
}
]
}
]
}
This configuration generates a file like this sample:
[{"Name": "Hank", "Date": "2004-05-22", "ID": "23432", "Identifiers": ["445", {"ID1": "11111", "ID2": "145546566345"}]},
{"Name": "Joe", "Date": "2000-03-12", "ID": "445", "Identifiers": ["11111", {"ID1": "145546566345", "ID2": "156765"}]}]
JSON file configuration allows only one level deep nested objects, that have to be defined in the __array_columns array
How to add a new source dataset for your project
Whenever you need to add a new source .txt file in the data_files folder, just add it to your data_files
folder.
The filename needs to correspond with the datafile value in your config.json file.
If running as a standalone CLI tool, the data_files
folder is located here:
dummy_file_generator/data_files
When running as an imported package, the data_files
folder is where ever you specify it to be
using the argument data_files_location
.
Now you can use this new data file in your project setup in config.json
file.
Developer information
testing using Pytest
Pytest unit and performance tests are also a part of this repository.
You can install Pytest using pip install pytest
To run tests:
cd c:\dummy_file_generator\dummy_file_generator
python -m pytest c:\dummy_file_generator\tests
( In case when running from IDE, make sure the current working dir is set to c:\\dummy_file_generator
)