Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

epa-regions

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

epa-regions

EPA region definitions and representations in

  • 0.0.3
  • Source
  • PyPI
  • Socket score

Maintainers
1

epa-regions-python

EPA regions with GeoPandas / regionmask.

Version on PyPI

regions

Code
python -m epa_regions -r 50m --states-only --save

Installation

conda activate ...
conda install -c conda-forge geopandas regionmask pooch pyogrio
pip install epa-regions

Usage

import epa_regions

# GeoPandas GeoDataFrame
epa = epa_regions.get(resolution="50m")

# Convert to regionmask Regions for use with gridded data
epa = epa_regions.to_regionmask(epa)

Point data

points

Code
import geopandas as gpd
import matplotlib.pyplot as plt
import numpy as np

import epa_regions

rng = np.random.default_rng(seed=123)

epa = epa_regions.get(resolution="50m")

# CONUS
lonmin, lonmax = -125, -66
latmin, latmax = 24, 50
n = 250
lon = rng.uniform(lonmin, lonmax, n)
lat = rng.uniform(latmin, latmax, n)
points = gpd.GeoDataFrame(
    geometry=gpd.points_from_xy(lon, lat, crs="EPSG:4326")
)

fig, ax = plt.subplots(constrained_layout=True, figsize=(4, 2.5))

epa.plot(column="number", ax=ax, alpha=0.6)
points.sjoin(epa, predicate="within").plot(column="number", ax=ax, ec="0.3", lw=1)

ax.set(xlim=(lonmin, lonmax), ylim=(latmin, latmax))
ax.axis("off")

fig.savefig("points.png", dpi="figure", bbox_inches="tight")

Gridded data

gridded

Code
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import xarray as xr

import epa_regions

epa = epa_regions.to_regionmask(epa_regions.get(resolution="50m"))

# CONUS
lonmin, lonmax = -125, -66
latmin, latmax = 24, 50

ds = (
    xr.tutorial.open_dataset("air_temperature")
    .sel(lon=slice(lonmin + 360, lonmax + 360), lat=slice(latmax, latmin))
)
mask = epa.mask(ds.isel(time=0))

proj = ccrs.LambertConformal(central_longitude=-100)
tran = ccrs.PlateCarree()

fig = plt.figure(figsize=(6, 6), constrained_layout=True)

ax = fig.add_subplot(3, 1, (1, 2), projection=proj)

mask.plot.pcolormesh(
    levels=np.arange(mask.min() - 0.5, mask.max() + 1),
    ax=ax,
    transform=ccrs.PlateCarree(),
    cmap="tab10",
    cbar_kwargs=dict(
        orientation="horizontal",
        fraction=0.075,
        pad=0.05,
        ticks=np.arange(mask.min(), mask.max() + 1),
        format="R{x:.0f}",
        label="EPA Region",
    ),
)

ax.add_feature(cfeature.STATES, linewidth=0.7, edgecolor="0.3")
ax.coastlines()
ax.set_extent([lonmin, lonmax - 2, latmin, latmax], crs=tran)
ax.set_title("")

ax = fig.add_subplot(3, 1, 3)

(dt,) = np.unique(ds.time.diff("time"))

window = pd.Timedelta("30D")
(
    ds["air"].groupby(mask)
    .mean()
    .rolling(time=int(window / dt), center=True)
    .mean()
    .plot(
        hue="mask",
        ax=ax,
        add_legend=False,
    )
)

ax.set_xlabel("")
ax.text(
    0.01,
    0.97,
    f"{window.total_seconds() / 86400:g}-day rolling mean",
    ha="left",
    va="top",
    transform=ax.transAxes,
    fontsize=11,
)

fig.savefig("gridded.png", dpi="figure", bbox_inches="tight")

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc