Security News
38% of CISOs Fear They’re Not Moving Fast Enough on AI
CISOs are racing to adopt AI for cybersecurity, but hurdles in budgets and governance may leave some falling behind in the fight against cyber threats.
.. image:: https://img.shields.io/pypi/v/feel_it.svg :target: https://pypi.python.org/pypi/feel_it
.. image:: https://github.com/MilaNLProc/feel-it/workflows/Python%20package/badge.svg :target: https://github.com/MilaNLProc/feel-it/actions
.. image:: https://img.shields.io/badge/License-MIT-blue.svg :target: https://lbesson.mit-license.org/ :alt: License
.. image:: https://colab.research.google.com/assets/colab-badge.svg :target: https://colab.research.google.com/drive/1e8h__sK73r4uwknxRJfsCMC36dLuZBa8?usp=sharing :alt: Colab Tutorial
.. image:: https://raw.githubusercontent.com/aleen42/badges/master/src/medium.svg :target: https://towardsdatascience.com/sentiment-analysis-and-emotion-recognition-in-italian-using-bert-92f5c8fe8a2 :alt: Medium Blog Post
Sentiment analysis is a common task to understand people's reactions online. Still, we often need more nuanced information: is the post negative because the user is angry or because they are sad?
An abundance of approaches has been introduced for tackling both tasks. However, at least for Italian, they all treat only one of the tasks at a time. We introduce FEEL-IT, a novel benchmark corpus of Italian Twitter posts annotated with four basic emotions: anger, fear, joy, sadness. By collapsing them, we can also do sentiment analysis. We evaluate our corpus on benchmark datasets for both emotion and sentiment classification, obtaining competitive results.
We release an open-source Python library, so researchers can use a model trained on FEEL-IT for inferring both sentiments and emotions from Italian text.
Code comes from HuggingFace and thus our License is an MIT license.
For models restrictions may apply on the data (which are derived from existing datasets) or Twitter (main data source). We refer users to the original licenses accompanying each dataset and Twitter regulations.
Send us an email :)
.. code-block:: bash
pip install -U feel-it
.. |colab1| image:: https://colab.research.google.com/assets/colab-badge.svg :target: https://colab.research.google.com/drive/1e8h__sK73r4uwknxRJfsCMC36dLuZBa8?usp=sharing :alt: Colab Tutorial
+--------------------------------------------------------------------------------+------------------+ | Name | Link | +================================================================================+==================+ | Sentiment and Emotion Classification (stable v1.0.2) | |colab1| | +--------------------------------------------------------------------------------+------------------+
The two classifiers are very easy to use. You can also directly use our colab tutorial!
.. code-block:: python
from feel_it import EmotionClassifier, SentimentClassifier
emotion_classifier = EmotionClassifier()
emotion_classifier.predict(["sono molto felice", "ma che cazzo vuoi", "sono molto triste"])
>> ['joy', 'anger', 'sadness']
sentiment_classifier = SentimentClassifier()
sentiment_classifier.predict(["sono molto felice", "ma che cazzo vuoi", "sono molto triste"])
>> ['positive', 'negative', 'negative']
Please use the following bibtex entry if you use this model in your project:
::
@inproceedings{bianchi2021feel, title = {{"FEEL-IT: Emotion and Sentiment Classification for the Italian Language"}}, author = "Bianchi, Federico and Nozza, Debora and Hovy, Dirk", booktitle = "Proceedings of the 11th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis", year = "2021", publisher = "Association for Computational Linguistics", }
You can find our HF Models here:
+---------------------------------------------------+--------------------+
| Name | Link |
+===================================================+====================+
| MilaNLProc/feel-it-italian-emotion | Emotion Model
_ |
+---------------------------------------------------+--------------------+
| MilaNLProc/feel-it-italian-sentiment | Sentiment Model
_ |
+---------------------------------------------------+--------------------+
Federico Bianchi
_ f.bianchi@unibocconi.it Bocconi UniversityDebora Nozza
_ debora.nozza@unibocconi.it Bocconi UniversityDirk Hovy
_ dirk.hovy@unibocconi.it Bocconi UniversityRemember that this is a research tool :)
This package was created with Cookiecutter_ and the audreyr/cookiecutter-pypackage
_ project template.
.. _Cookiecutter: https://github.com/audreyr/cookiecutter
.. _audreyr/cookiecutter-pypackage
: https://github.com/audreyr/cookiecutter-pypackage
.. _Sentiment Model
: https://huggingface.co/MilaNLProc/feel-it-italian-sentiment
.. _Emotion Model
: https://huggingface.co/MilaNLProc/feel-it-italian-emotion
.. _Federico Bianchi: https://federicobianchi.io
.. _Debora Nozza: https://dnozza.github.io/
.. _Dirk Hovy: https://dirkhovy.com/
FAQs
A python package for sentiment analysis and emotion recognition in italian
We found that feel-it demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
CISOs are racing to adopt AI for cybersecurity, but hurdles in budgets and governance may leave some falling behind in the fight against cyber threats.
Research
Security News
Socket researchers uncovered a backdoored typosquat of BoltDB in the Go ecosystem, exploiting Go Module Proxy caching to persist undetected for years.
Security News
Company News
Socket is joining TC54 to help develop standards for software supply chain security, contributing to the evolution of SBOMs, CycloneDX, and Package URL specifications.