Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

fmp-data

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

fmp-data

Python client for Financial Modeling Prep API

  • 0.3.1
  • PyPI
  • Socket score

Maintainers
1

FMP Data Client

Test CI/CD Pipelinecodecov Python Poetry License: MIT

A Python client for the Financial Modeling Prep (FMP) API with comprehensive logging, rate limiting, and error handling.

Features

  • 🚀 Simple and intuitive interface
  • 🔒 Built-in rate limiting
  • 📝 Comprehensive logging
  • ⚡ Async support
  • 🏷️ Type hints and validation with Pydantic
  • 🔄 Automatic retries with exponential backoff
  • 🎯 100% test coverage (excluding predefined endpoints)
  • 🛡️ Secure API key handling
  • 📊 Support for all major FMP endpoints
  • 🔍 Detailed error messages
  • 🚦 Configurable retry strategies
  • 🤖 NEW: Langchain Integration

Getting an API Key

To use this library, you'll need an API key from Financial Modeling Prep (FMP). You can:

Installation

# Using pip
pip install fmp-data

# Using poetry
poetry add fmp-data

# For Langchain integration
pip install fmp-data[langchain]
# or
poetry add fmp-data --extras langchain

Langchain Integration

Prerequisites

  • FMP API Key (FMP_API_KEY) - Get one here
  • OpenAI API Key (OPENAI_API_KEY) - Required for embeddings

Quick Start with Vector Store

from fmp_data import create_vector_store

# Initialize the vector store
vector_store = create_vector_store(
    fmp_api_key="YOUR_FMP_API_KEY",       # pragma: allowlist secret
    openai_api_key="YOUR_OPENAI_API_KEY"  # pragma: allowlist secret
)

# Example queries
queries = [
    "what is the price of Apple stock?",
    "what was the revenue of Tesla last year?",
    "what's new in the market?"
]

# Search for relevant endpoints and tools
for query in queries:
    print(f"\nQuery: {query}")

    # Get tools formatted for OpenAI
    tools = vector_store.get_tools(query, provider="openai")

    print("\nMatching Tools:")
    for tool in tools:
        print(f"Name: {tool.get('name')}")
        print(f"Description: {tool.get('description')}")
        print("Parameters:", tool.get('parameters'))
        print()

    # You can also search endpoints directly
    results = vector_store.search(query)
    print("\nRelevant Endpoints:")
    for result in results:
        print(f"Endpoint: {result.name}")
        print(f"Score: {result.score:.2f}")
        print()

Alternative Setup: Using Configuration

from fmp_data import FMPDataClient, ClientConfig
from fmp_data.lc.config import LangChainConfig
from fmp_data.lc.embedding import EmbeddingProvider

# Configure with LangChain support
config = LangChainConfig(
    api_key="YOUR_FMP_API_KEY",           # pragma: allowlist secret
    embedding_provider=EmbeddingProvider.OPENAI,
    embedding_api_key="YOUR_OPENAI_API_KEY", # pragma: allowlist secret
    embedding_model="text-embedding-3-small"
)

# Create client with LangChain config
client = FMPDataClient(config=config)

# Create vector store using the client
vector_store = client.create_vector_store()

# Search for relevant endpoints
results = vector_store.search("show me Tesla's financial metrics")
for result in results:
    print(f"Found endpoint: {result.name}")
    print(f"Relevance score: {result.score:.2f}")

Interactive Example

Try out the LangChain integration in our interactive Colab notebook: Open In Colab

This notebook demonstrates how to:

  • Build an intelligent financial agent using fmp-data and LangChain
  • Access real-time market data through natural language queries
  • Use semantic search to select relevant financial tools
  • Create multi-turn conversations about financial data

Environment Variables

You can also configure the integration using environment variables:

# Required
export FMP_API_KEY=your_fmp_api_key_here
export OPENAI_API_KEY=your_openai_api_key_here

# Optional
export FMP_EMBEDDING_PROVIDER=openai
export FMP_EMBEDDING_MODEL=text-embedding-3-small

Features

  • 🔍 Semantic search across all FMP endpoints
  • 🤖 Auto-conversion to LangChain tools
  • 📊 Query endpoints using natural language
  • 🎯 Relevance scoring for search results
  • 🔄 Automatic caching of embeddings
  • 💾 Persistent vector store for faster lookups

Quick Start

from fmp_data import FMPDataClient, ClientConfig, LoggingConfig
from fmp_data.exceptions import FMPError, RateLimitError, AuthenticationError

# Method 1: Initialize with direct API key
client = FMPDataClient(api_key="your_api_key_here") # pragma: allowlist secret

# Method 2: Initialize from environment variable (FMP_API_KEY)
client = FMPDataClient.from_env()

# Method 3: Initialize with custom configuration
config = ClientConfig(
    api_key="your_api_key_here", #pragma: allowlist secret
    timeout=30,
    max_retries=3,
    base_url="https://financialmodelingprep.com/api",
    logging=LoggingConfig(level="INFO")
)
client = FMPDataClient(config=config)

# Using with context manager (recommended)
with FMPDataClient(api_key="your_api_key_here") as client: # pragma: allowlist secret
    try:
        # Get company profile
        profile = client.company.get_profile("AAPL")
        print(f"Company: {profile.company_name}")
        print(f"Industry: {profile.industry}")
        print(f"Market Cap: ${profile.mkt_cap:,.2f}")

        # Search companies
        results = client.company.search("Tesla", limit=5)
        for company in results:
            print(f"{company.symbol}: {company.name}")

    except RateLimitError as e:
        print(f"Rate limit exceeded. Wait {e.retry_after} seconds")
    except AuthenticationError:
        print("Invalid API key")
    except FMPError as e:
        print(f"API error: {e}")

# Client is automatically closed after the with block

Key Components

1. Company Information

from fmp_data import FMPDataClient

with FMPDataClient.from_env() as client:
    # Get company profile
    profile = client.company.get_profile("AAPL")

    # Get company executives
    executives = client.company.get_executives("AAPL")

    # Search companies
    results = client.company.search("Tesla", limit=5)

    # Get employee count history
    employees = client.company.get_employee_count("AAPL")

2. Financial Statements

from fmp_data import FMPDataClient

with FMPDataClient.from_env() as client:
    # Get income statements
    income_stmt = client.fundamental.get_income_statement(
        "AAPL",
        period="quarter",  # or "annual"
        limit=4
    )

    # Get balance sheets
    balance_sheet = client.fundamental.get_balance_sheet(
        "AAPL",
        period="annual"
    )

    # Get cash flow statements
    cash_flow = client.fundamental.get_cash_flow_statement("AAPL")

3. Market Data

from fmp_data import FMPDataClient

with FMPDataClient.from_env() as client:
    # Get real-time quote
    quote = client.market.get_quote("TSLA")

    # Get historical prices
    history = client.market.get_historical_price(
        "TSLA",
        from_date="2023-01-01",
        to_date="2023-12-31"
    )

4. Async Support

import asyncio
from fmp_data import FMPDataClient

async def get_multiple_profiles(symbols):
    async with FMPDataClient.from_env() as client:
        tasks = [client.company.get_profile_async(symbol)
                for symbol in symbols]
        return await asyncio.gather(*tasks)

# Run async function
symbols = ["AAPL", "MSFT", "GOOGL"]
profiles = asyncio.run(get_multiple_profiles(symbols))

Configuration

Environment Variables

# Required
FMP_API_KEY=your_api_key_here

# Optional
FMP_BASE_URL=https://financialmodelingprep.com/api
FMP_TIMEOUT=30
FMP_MAX_RETRIES=3

# Rate Limiting
FMP_DAILY_LIMIT=250
FMP_REQUESTS_PER_SECOND=10
FMP_REQUESTS_PER_MINUTE=300

# Logging
FMP_LOG_LEVEL=INFO
FMP_LOG_PATH=/path/to/logs
FMP_LOG_MAX_BYTES=10485760
FMP_LOG_BACKUP_COUNT=5

Custom Configuration

from fmp_data import FMPDataClient, ClientConfig, LoggingConfig, RateLimitConfig, LogHandlerConfig

config = ClientConfig(
    api_key="your_api_key_here",  # pragma: allowlist secret
    timeout=30,
    max_retries=3,
    base_url="https://financialmodelingprep.com/api",
    rate_limit=RateLimitConfig(
        daily_limit=250,
        requests_per_second=10,
        requests_per_minute=300
    ),
    logging=LoggingConfig(
        level="DEBUG",
        handlers={
            "console": LogHandlerConfig(
                class_name="StreamHandler",
                level="INFO",
                format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
            ),
            "file": LogHandlerConfig(
                class_name="RotatingFileHandler",
                level="DEBUG",
                format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
                handler_kwargs={
                    "filename": "fmp.log",
                    "maxBytes": 10485760,
                    "backupCount": 5
                }
            )
        }
    )
)

client = FMPDataClient(config=config)

Error Handling

from fmp_data import FMPDataClient
from fmp_data.exceptions import (
    FMPError,
    RateLimitError,
    AuthenticationError,
    ValidationError,
    ConfigError
)
try:
    with FMPDataClient.from_env() as client:
        profile = client.company.get_profile("INVALID")

except RateLimitError as e:
    print(f"Rate limit exceeded. Wait {e.retry_after} seconds")
    print(f"Status code: {e.status_code}")
    print(f"Response: {e.response}")

except AuthenticationError as e:
    print("Invalid API key or authentication failed")
    print(f"Status code: {e.status_code}")

except ValidationError as e:
    print(f"Invalid parameters: {e.message}")

except ConfigError as e:
    print(f"Configuration error: {e.message}")

except FMPError as e:
    print(f"General API error: {e.message}")

Development Setup

  1. Clone the repository:
git clone https://github.com/MehdiZare/fmp-data.git
cd fmp-data
  1. Install dependencies using Poetry:
poetry install
  1. Set up pre-commit hooks:
poetry run pre-commit install

Running Tests

# Run all tests with coverage
poetry run pytest --cov=fmp_data

# Run specific test file
poetry run pytest tests/test_client.py

# Run integration tests (requires API key)
FMP_TEST_API_KEY=your_test_api_key poetry run pytest tests/integration/

View the latest test coverage report here.

Contributing

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature-name
  3. Make your changes
  4. Run tests: poetry run pytest
  5. Create a pull request

Please ensure:

  • Tests pass
  • Code is formatted with black
  • Type hints are included
  • Documentation is updated
  • Commit messages follow conventional commits

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments

  • Financial Modeling Prep for providing the API
  • Contributors to the project
  • Open source packages used in this project

Support

Examples

Interactive Notebooks

Code Examples

# Basic usage example
from fmp_data import FMPDataClient

with FMPDataClient.from_env() as client:
    # Get company profile
    profile = client.company.get_profile("AAPL")
    print(f"Company: {profile.company_name}")

Release Notes

See CHANGELOG.md for a list of changes in each release.

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc