Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

hand-gesture-recognizer

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

hand-gesture-recognizer

A library for recognizing hand gestures using MediaPipe

  • 1.3.1
  • PyPI
  • Socket score

Maintainers
1

hand-gesture-recognition

This is a sample program that recognizes hand signs and finger gestures with a simple MLP using the detected key points..

mqlrf-s6x16This repository contains the following contents.

  • Sample program
  • Hand sign recognition model(TFLite)
  • Finger gesture recognition model(TFLite)
  • Learning data for hand sign recognition and notebook for learning
  • Learning data for finger gesture recognition and notebook for learning

Requirements

  • mediapipe 0.8.1
  • OpenCV 3.4.2 or Later
  • Tensorflow 2.3.0 or Later<br>tf-nightly 2.5.0.dev or later (Only when creating a TFLite for an LSTM model)
  • scikit-learn 0.23.2 or Later (Only if you want to display the confusion matrix)
  • matplotlib 3.3.2 or Later (Only if you want to display the confusion matrix)

Demo

Here's how to install the project.

pip install hand-gesture-recognizer

The following options can be specified when running the demo.

  • --device<br>Specifying the camera device number (Default:0)
  • --width<br>Width at the time of camera capture (Default:960)
  • --height<br>Height at the time of camera capture (Default:540)
  • --use_static_image_mode<br>Whether to use static_image_mode option for MediaPipe inference (Default:Unspecified)
  • --min_detection_confidence<br> Detection confidence threshold (Default:0.5)
  • --min_tracking_confidence<br> Tracking confidence threshold (Default:0.5)

Directory

<pre> │ app.py │ keypoint_classification.ipynb │ point_history_classification.ipynb │
├─model │ ├─keypoint_classifier │ │ │ keypoint.csv │ │ │ keypoint_classifier.hdf5 │ │ │ keypoint_classifier.py │ │ │ keypoint_classifier.tflite │ │ └─ keypoint_classifier_label.csv │ │
│ └─point_history_classifier │ │ point_history.csv │ │ point_history_classifier.hdf5 │ │ point_history_classifier.py │ │ point_history_classifier.tflite │ └─ point_history_classifier_label.csv │
└─utils └─cvfpscalc.py </pre>

keypoint_classification.ipynb

This is a model training script for hand sign recognition.

point_history_classification.ipynb

This is a model training script for finger gesture recognition.

model/keypoint_classifier

This directory stores files related to hand sign recognition.<br> The following files are stored.

  • Training data(keypoint.csv)
  • Trained model(keypoint_classifier.tflite)
  • Label data(keypoint_classifier_label.csv)
  • Inference module(keypoint_classifier.py)

model/point_history_classifier

This directory stores files related to finger gesture recognition.<br> The following files are stored.

  • Training data(point_history.csv)
  • Trained model(point_history_classifier.tflite)
  • Label data(point_history_classifier_label.csv)
  • Inference module(point_history_classifier.py)

utils/cvfpscalc.py

This is a module for FPS measurement.

Training

Hand sign recognition and finger gesture recognition can add and change training data and retrain the model.

Hand sign recognition training

1.Learning data collection

Press "k" to enter the mode to save key points(displayed as 「MODE:Logging Key Point」)<br> <img src="https://user-images.githubusercontent.com/37477845/102235423-aa6cb680-3f35-11eb-8ebd-5d823e211447.jpg" width="60%"><br><br> If you press "0" to "9", the key points will be added to "model/keypoint_classifier/keypoint.csv" as shown below.<br> 1st column: Pressed number (used as class ID), 2nd and subsequent columns: Key point coordinates<br> <img src="https://user-images.githubusercontent.com/37477845/102345725-28d26280-3fe1-11eb-9eeb-8c938e3f625b.png" width="80%"><br><br> The key point coordinates are the ones that have undergone the following preprocessing up to ④.<br> <img src="https://user-images.githubusercontent.com/37477845/102242918-ed328c80-3f3d-11eb-907c-61ba05678d54.png" width="80%"> <img src="https://user-images.githubusercontent.com/37477845/102244114-418a3c00-3f3f-11eb-8eef-f658e5aa2d0d.png" width="80%"><br><br> In the initial state, three types of learning data are included: open hand (class ID: 0), close hand (class ID: 1), and pointing (class ID: 2).<br> If necessary, add 3 or later, or delete the existing data of csv to prepare the training data.<br> <img src="https://user-images.githubusercontent.com/37477845/102348846-d0519400-3fe5-11eb-8789-2e7daec65751.jpg" width="25%"> <img src="https://user-images.githubusercontent.com/37477845/102348855-d2b3ee00-3fe5-11eb-9c6d-b8924092a6d8.jpg" width="25%"> <img src="https://user-images.githubusercontent.com/37477845/102348861-d3e51b00-3fe5-11eb-8b07-adc08a48a760.jpg" width="25%">

2.Model training

Open "keypoint_classification.ipynb" in Jupyter Notebook and execute from top to bottom.<br> To change the number of training data classes, change the value of "NUM_CLASSES = 3" <br>and modify the label of "model/keypoint_classifier/keypoint_classifier_label.csv" as appropriate.<br><br>

X.Model structure

The image of the model prepared in "keypoint_classification.ipynb" is as follows. <img src="https://user-images.githubusercontent.com/37477845/102246723-69c76a00-3f42-11eb-8a4b-7c6b032b7e71.png" width="50%"><br><br>

Finger gesture recognition training

1.Learning data collection

Press "h" to enter the mode to save the history of fingertip coordinates (displayed as "MODE:Logging Point History").<br> <img src="https://user-images.githubusercontent.com/37477845/102249074-4d78fc80-3f45-11eb-9c1b-3eb975798871.jpg" width="60%"><br><br> If you press "0" to "9", the key points will be added to "model/point_history_classifier/point_history.csv" as shown below.<br> 1st column: Pressed number (used as class ID), 2nd and subsequent columns: Coordinate history<br> <img src="https://user-images.githubusercontent.com/37477845/102345850-54ede380-3fe1-11eb-8d04-88e351445898.png" width="80%"><br><br> The key point coordinates are the ones that have undergone the following preprocessing up to ④.<br> <img src="https://user-images.githubusercontent.com/37477845/102244148-49e27700-3f3f-11eb-82e2-fc7de42b30fc.png" width="80%"><br><br> In the initial state, 4 types of learning data are included: stationary (class ID: 0), clockwise (class ID: 1), counterclockwise (class ID: 2), and moving (class ID: 4). <br> If necessary, add 5 or later, or delete the existing data of csv to prepare the training data.<br> <img src="https://user-images.githubusercontent.com/37477845/102350939-02b0c080-3fe9-11eb-94d8-54a3decdeebc.jpg" width="20%"> <img src="https://user-images.githubusercontent.com/37477845/102350945-05131a80-3fe9-11eb-904c-a1ec573a5c7d.jpg" width="20%"> <img src="https://user-images.githubusercontent.com/37477845/102350951-06444780-3fe9-11eb-98cc-91e352edc23c.jpg" width="20%"> <img src="https://user-images.githubusercontent.com/37477845/102350942-047a8400-3fe9-11eb-9103-dbf383e67bf5.jpg" width="20%">

2.Model training

Open "point_history_classification.ipynb" in Jupyter Notebook and execute from top to bottom.<br> To change the number of training data classes, change the value of "NUM_CLASSES = 4" and <br>modify the label of "model/point_history_classifier/point_history_classifier_label.csv" as appropriate. <br><br>

X.Model structure

The image of the model prepared in "point_history_classification.ipynb" is as follows. <img src="https://user-images.githubusercontent.com/37477845/102246771-7481ff00-3f42-11eb-8ddf-9e3cc30c5816.png" width="50%"><br> The model using "LSTM" is as follows. <br>Please change "use_lstm = False" to "True" when using (tf-nightly required (as of 2020/12/16))<br> <img src="https://user-images.githubusercontent.com/37477845/102246817-8368b180-3f42-11eb-9851-23a7b12467aa.png" width="60%">

Reference

  • Dynamic gesture recognition based on 2D convolutional neural network and feature fusion
  • Fine-Grained Gesture Control for Mobile Devices in Driving Environments

Contributors

  • Umesh Singh Verma
  • Ankit Yadav
  • Manan Patel
  • Sukrit Malpani
  • Siddhant Mukund

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc