Imandra CLI and API client library
Imandra is a cloud-native automated reasoning engine for analysis of algorithms and data.
This package contains the imandra
Python library for interacting with Imandra's web APIs. It includes:
imandra.core
, which provides programmatic access to Imandra X, Imandra's core reasoning engine.imandra.u.agents.*
and imandra.u.reasoners.*
, bindings to Imandra Universe Agents and Reasoners.imandra.ipl
, tools for analysing Imandra Protocol Language (IPL) files.
If you're interested in developing Imandra X or IPL models, you may also want to see the Imandra documentation.
The imandra
python API reference documentation is available here.
Authentication
First obtain an API key from https://universe.imandra.ai.
The Python library will read the API key from the first of:
- The
api_key
parameter passed when instantiating a Client
. - The
IMANDRA_API_KEY
environment variable. - The file
$HOME/.config/imandra/api_key
(MacOS and Linux) or %USERPROFILE%\AppData\Local\imandra\api_key
(Windows)
Example: Imandra Core
First, ensure dependencies for the core
module are installed. Note that imandra.core
requires Python >= 3.12.
$ pip install 'imandra[core]'
$ ipython
...
In [1]: from imandra.core import Client
In [2]: client = Client()
In [3]: client.eval_src('let f x = if x > 0 then if x * x < 0 then x else x + 1 else x')
Out[3]: success: true
In [4]: result = client.verify_src('fun x -> x > 0 ==> f x > 0')
In [5]: result
Out[5]:
proved {
proof_pp: "..."
}
In [6]: print(result.proved.proof_pp)
{ id = 1; concl = `|- x > 0 ==> f x > 0`;
view =
T_deduction {
premises =
[("p",
[{ id = 0; concl = `|- x > 0 ==> f x > 0`;
view = T_deduction {premises = []} }
])
]}
}
In [7]: result = client.instance_src('fun x -> f x = 43')
In [8]: result
Out[8]:
sat {
model {
m_type: Instance
src: "module M = struct\n\n let x = 42\n\n end\n"
artifact {
kind: "cir.model"
data: "..."
api_version: "v8"
}
}
}
In [9]: print(result.sat.model.src)
module M = struct
let x = 42
end
In [10]: result = client.decompose('f')
In [11]: result
Out[11]:
artifact {
kind: "cir.fun_decomp"
data: "..."
api_version: "v8"
}
regions_str {
constraints_str: "not (x > 0)"
invariant_str: "x"
model_str {
k: "x"
v: "0"
}
}
regions_str {
constraints_str: "not (x * x < 0)"
constraints_str: "x > 0"
invariant_str: "x + 1"
model_str {
k: "x"
v: "1"
}
}
task {
id {
id: "task:decomp:rE3VSX-t5kbrrAksQ4saBrMUs2uHTXfu-CqeZunV9aE="
}
kind: TASK_DECOMP
}
Example: Imandra Universe reasoners
$ pip install imandra
$ ipython
In [1]: from imandra.u.reasoners.prover9 import Client
In [2]: client = Client()
In [3]: input = "formulas(sos).\n\n e * x = x.\n x'\'' * x = e.\n (x * y) * z = x * (y * z).\n\n x * x = e.\n\nend_of_list.\n\nformulas(goals).\n\n x * y = y * x.\n\nend_of_list ...: ."
In [4]: result = client.eval(input)
In [5]: print(result['results'][0])
============================== Prover9 ===============================
Prover9 (64) version 2009-11A, November 2009.
Process 18 was started by universe on localhost,
Mon Jan 6 14:52:26 2025
The command was "/imandra-universe/prover9/bin/prover9 -t 45".
============================== end of head ===========================
============================== INPUT =================================
formulas(sos).
e * x = x.
x''' * x = e.
(x * y) * z = x * (y * z).
x * x = e.
end_of_list.
formulas(goals).
x * y = y * x.
end_of_list.
============================== end of input ==========================
...
============================== PROOF =================================
% Proof 1 at 0.01 (+ 0.00) seconds.
% Length of proof is 16.
% Level of proof is 7.
% Maximum clause weight is 11.000.
% Given clauses 12.
1 x * y = y * x # label(non_clause) # label(goal). [goal].
2 e * x = x. [assumption].
3 x''' * x = e. [assumption].
4 (x * y) * z = x * (y * z). [assumption].
5 x * x = e. [assumption].
6 c2 * c1 != c1 * c2. [deny(1)].
7 x''' * (x * y) = y. [para(3(a,1),4(a,1,1)),rewrite([2(2)]),flip(a)].
8 x * (x * y) = y. [para(5(a,1),4(a,1,1)),rewrite([2(2)]),flip(a)].
9 x * (y * (x * y)) = e. [para(5(a,1),4(a,1)),flip(a)].
11 x'''''' * e = x. [para(3(a,1),7(a,1,2))].
13 x''' * e = x. [para(5(a,1),7(a,1,2))].
15 x''' = x. [back_rewrite(11),rewrite([13(8)])].
16 x * e = x. [back_rewrite(13),rewrite([15(3)])].
19 x * (y * x) = y. [para(9(a,1),8(a,1,2)),rewrite([16(2)]),flip(a)].
24 x * y = y * x. [para(19(a,1),8(a,1,2))].
25 $F. [resolve(24,a,6,a)].
============================== end of proof ==========================
============================== STATISTICS ============================
Given=12. Generated=122. Kept=23. proofs=1.
Usable=8. Sos=3. Demods=12. Limbo=2, Disabled=14. Hints=0.
Kept_by_rule=0, Deleted_by_rule=0.
Forward_subsumed=99. Back_subsumed=0.
Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0.
New_demodulators=21 (0 lex), Back_demodulated=9. Back_unit_deleted=0.
Demod_attempts=770. Demod_rewrites=156.
Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0.
Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0.
Megabytes=0.06.
User_CPU=0.01, System_CPU=0.00, Wall_clock=0.
============================== end of statistics =====================
============================== end of search =========================
THEOREM PROVED
Example: Imandra Universe agents
$ pip install imandra[universe]
$ ipython
In [1]: from imandra.u.agents import cogito
In [2]: from langchain_core.messages import HumanMessage
In [3]: g = cogito.get_remote_graph()
In [4]: cogito.create_thread_sync(g)
In [5]: g.invoke({'messages': [HumanMessage(content='hello')], 'tasks': []})
Out[5]:
{'messages': [{'content': "You are Cogito, agent within Imandra Universe - a cloud platform for accessing automated logical reasoners, tools and agents connected to them.",
'additional_kwargs': {},
'response_metadata': {},
'type': 'system',
'name': None,
'id': 'ae883182-17df-4ced-87e2-4b79b7777e93'},
{'content': 'hello',
'additional_kwargs': {'example': False,
'additional_kwargs': {},
'response_metadata': {}},
'response_metadata': {},
'type': 'human',
'name': None,
'id': 'c5491021-fec5-4e4a-8651-eda927d8e473',
'example': False},
{'content': 'Hello! How can I assist you today?',
'additional_kwargs': {},
'response_metadata': {},
'type': 'ai',
'name': 'supervisor',
'id': '52e4fd16-235a-4ac2-bdba-3a20d19870a3',
'example': False,
'tool_calls': [],
'invalid_tool_calls': [],
'usage_metadata': None}],
'tasks': []}
Example: IPL
$ pip install imandra
$ ipython
In [1]: from imandra.ipl import Client
In [2]: client = Client()
In [3]: job_id = client.unsat_analysis('/path/to/model.ipl', None, None)
In [4]: client.status(job_id)
Out[4]: 'processing'
In [5]: client.wait(job_id)
Out[5]: 'done'
In [6]: data = client.data(job_id)
In [7]: print(data['content'].decode('ascii'))
For message flow `simple_orders_one`, unsat cores: []
CLI
The imandra
package also adds an entry point called imandra-cli
which exposes the imandra
library functionality in a more discoverable way:
$ python3 -m venv ./my/venv
...
$ ./my/venv/pip install imandra
...
$ ./my/venv/bin/imandra-cli --help
usage: imandra [-h] auth,ipl,core,rule-synth,cfb ...
Imandra CLI
positional arguments:
{auth,ipl,core,rule-synth,cfb}
optional arguments:
-h, --help show this help message and exit
On Windows, the entry point can be found as .\my\venv\Scripts\imandra-cli.exe
.
CLI Authentication
This is the first step to start using the Imandra CLI. Our cloud environment requires a user account, which you can setup like this:
$ ./my/venv/bin/imandra-cli auth login
and follow the prompts to authenticate. This will create the relevant credentials in ~/.imandra
(or %APPDATA%\imandra
on Windows).
You should now be able to invoke CLI commands that require authentication.