img-show
img-show
is a Python package that simplifies the process of displaying images using OpenCV. It allows you to load, coerce, and display images of various types, shapes, and data formats effortlessly, handling the complexities of image preprocessing and window management for you.
Features
- Image Loading and Coercion:
- Supports images in NumPy arrays.
- Automatically handles PyTorch tensors.
- Coerces images into valid shapes for display, even with extra dimensions.
Installation
You can install img-show
via pip:
pip install img-show
Requirements
- Python >= 3.8
- NumPy
- OpenCV
- Tkinter (usually included with Python installations)
Usage
Displaying an Image
img-show
provides a simple show_img
function to display images.
from img_show import show_img
show_img(img)
Handling Different Image Formats
img-show
can handle images in various formats, including NumPy arrays and PyTorch tensors.
import numpy as np
import torch
from img_show import show_img
img_numpy = np.random.rand(256, 256, 3)
show_img(img_numpy)
img_tensor = torch.randn(3, 256, 256)
show_img(img_tensor)
Customizing Display Options
You can customize the window name, wait delay, and whether to wait for a key press.
from img_show import show_img
show_img(img, window_name='My Image', wait_delay=5000, do_wait=True)
Resizing Images Automatically
If the image is larger than the screen, img-show
automatically resizes the window to fit the screen while maintaining the aspect ratio.
from img_show import show_img
large_img = np.random.rand(4000, 6000, 3)
show_img(large_img)
Handling Images with Extra Dimensions
img-show
can coerce images with extra dimensions (e.g., singleton dimensions) into valid shapes for display.
import numpy as np
from img_show import show_img
extra_dim_img = np.random.rand(1, 256, 256, 3)
show_img(extra_dim_img)
multiple_extra_dims_img = np.random.rand(1, 1, 256, 256, 3)
show_img(multiple_extra_dims_img)
singleton_channel_img = np.random.rand(256, 256, 1)
show_img(singleton_channel_img)
Handling Images in Different Channel Orders
img-show
automatically handles different channel orders (e.g., channels-first vs. channels-last).
import numpy as np
from img_show import show_img
channels_first_img = np.random.rand(3, 256, 256)
show_img(channels_first_img)
channels_first_img = np.random.rand(1, 1, 3, 256, 256, 1)
show_img(channels_first_img)
channels_last_img = np.random.rand(256, 256, 3)
show_img(channels_last_img)
channels_last_img = np.random.rand(1, 1, 256, 256, 3, 1)
show_img(channels_last_img)
API Reference
show_img
Function
Displays an image using OpenCV's imshow
function, automatically handling image coercion and window sizing.
show_img(img: Any, window_name: str = ' ', wait_delay: int = 0, do_wait: bool = True)
Parameters
img
: The image to display. Can be a NumPy array or a PyTorch tensor.window_name
: The name of the display window (default is a blank space).wait_delay
: The delay in milliseconds for cv2.waitKey()
(default is 0
, which waits indefinitely).do_wait
: Whether to wait for a key press after displaying the image (default is True
).
coerce_img
Converts the image to a NumPy array with a valid shape and data type for display.
coerce_img(img: Any) -> np.ndarray
License
img-show
is licensed under the MIT License.
Author
Ben Elfner