Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

kaggle-dataset-creator

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

kaggle-dataset-creator

A Python package to generate csv/json from command line. It allows you to create CSV/JSON files by asking you to manually enter data for each cells row by row in Terminal (Windows CMD / Bash).

  • 0.0.1
  • PyPI
  • Socket score

Maintainers
1

kaggle_dataset_creator - A Python package to generate csv/json

A Python package that allows you to create CSV/JSON files by manually entering each of the entries of cells row by row in Terminal (Windows CMD / Bash).

Installation

Open terminal and enter the below command (Python 3).

pip install kaggle_dataset_creator

Features

  • It allows you to create your own CSV file if you are looking for creating a CSV with manually entered data. You can also get the JSON version of the entered data.

  • You can also view your data at any point of time in your Terminal and again continue to enter data if you wish to add more rows/records for your final CSV/JSON file.

Note: Currently the package is in development, it will be released soon.

Example

from kaggle_dataset_creator import KaggleDataSet

kd = KaggleDataSet()
kd.start()

print(kd.columns)
print(kd.container)

kd.view();   # To view the final DataFrame on Terminal
kd.to_csv(); # To save in csv, default file name is take if filename is not provided 

print("DATA:- ")
print(kd.dataset) # Accessing dataset attribute to get the final DataFrame

print('Total rows: ', kd.rows)
print('Types: ', kd.data_types)

If you want to try above in the terminal, try as below after installation.

In next version, it will be released with more features. Here our intension is to get the final CSV/JSON.

>>> from kaggle_dataset_creator import KaggleDataSet
>>>
>>> kd = KaggleDataSet()
>>> kd.start()
Enter number of columns that you want in your dataset: 3

SUCCESS: You are successfully done with no. of columns
Enter the name of 1st column: fullname
Enter the name of 2nd column: age
Enter the name of 3rd column: salary

SUCCESS: You are successfully done with the column names
[DATA ENTRY] <row: 1>  fullname    : Raj Shekhar
[DATA ENTRY] <row: 1>  age         : 45
[DATA ENTRY] <row: 1>  salary      : 600000

==================================================
Do you want to add 1 more row / view data (y/n/v): y
==================================================
[DATA ENTRY] <row: 2>  fullname    : Venc Bell
[DATA ENTRY] <row: 2>  age         : 67
[DATA ENTRY] <row: 2>  salary      : 900000

==================================================
Do you want to add 1 more row / view data (y/n/v): y
==================================================
[DATA ENTRY] <row: 3>  fullname    : Robert Grime
[DATA ENTRY] <row: 3>  age         : 89
[DATA ENTRY] <row: 3>  salary      : 9000000

==================================================
Do you want to add 1 more row / view data (y/n/v): v

--------------------------------------------------
       fullname age   salary
0   Raj Shekhar  45   600000
1     Venc Bell  67   900000
2  Robert Grime  89  9000000
--------------------------------------------------

==================================================
Do you want to add 1 more row / view data (y/n/v): y
==================================================
[DATA ENTRY] <row: 4>  fullname    : Elen Goom
[DATA ENTRY] <row: 4>  age         : 55
[DATA ENTRY] <row: 4>  salary      : 800000

==================================================
Do you want to add 1 more row / view data (y/n/v): y
==================================================
[DATA ENTRY] <row: 5>  fullname    : Rita Ora
[DATA ENTRY] <row: 5>  age         : 36
[DATA ENTRY] <row: 5>  salary      : 9900000

==================================================
Do you want to add 1 more row / view data (y/n/v): v

--------------------------------------------------
       fullname age   salary
0   Raj Shekhar  45   600000
1     Venc Bell  67   900000
2  Robert Grime  89  9000000
3     Elen Goom  55   800000
4      Rita Ora  36  9900000
--------------------------------------------------

==================================================
Do you want to add 1 more row / view data (y/n/v): y
==================================================
[DATA ENTRY] <row: 6>  fullname    : Senso Tomy
[DATA ENTRY] <row: 6>  age         : 54
[DATA ENTRY] <row: 6>  salary      : 7700000

==================================================
Do you want to add 1 more row / view data (y/n/v): n
Is this mistakenly typed (y/n): n
==================================================

SUCCESS: You are successfully done with entering data for your dataset
>>>
>>> # View the data
...
>>> kd.view()

--------------------------------------------------
       fullname age   salary
0   Raj Shekhar  45   600000
1     Venc Bell  67   900000
2  Robert Grime  89  9000000
3     Elen Goom  55   800000
4      Rita Ora  36  9900000
5    Senso Tomy  54  7700000
--------------------------------------------------
True
>>>
>>> success = kd.view()

--------------------------------------------------
       fullname age   salary
0   Raj Shekhar  45   600000
1     Venc Bell  67   900000
2  Robert Grime  89  9000000
3     Elen Goom  55   800000
4      Rita Ora  36  9900000
5    Senso Tomy  54  7700000
--------------------------------------------------
>>>
>>> success
True
>>>
>>> # Store the dataset as DataFrame
...
>>> df = kd.dataset
>>> df
       fullname age   salary
0   Raj Shekhar  45   600000
1     Venc Bell  67   900000
2  Robert Grime  89  9000000
3     Elen Goom  55   800000
4      Rita Ora  36  9900000
5    Senso Tomy  54  7700000
>>>
>>> type(df)
<class 'pandas.core.frame.DataFrame'>
>>>
>>> kd.rows
6
>>>
>>> kd.data_types
{'fullname': 'string', 'age': 'numeric', 'salary': 'numeric'}
>>>

Generating random strings

Python 3.6.7 (v3.6.7:6ec5cf24b7, Oct 20 2018, 03:02:14) 
[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.57)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> 
>>> from kaggle_dataset_creator.random_string import random_string
>>> 
>>> random_string()
'VFdwQmVFOV'
>>> 
>>> random_string()
'TWpBeE9TMH'
>>> 
>>> random_string()
'=UDN0gDN54'
>>> 
>>> random_string()
'TWpBeE9TMH'
>>> 
>>> random_string()
'=ATM1UDMz4'
>>> 
>>> random_string(11)
'VFdwQmVFOVR'
>>> 
>>> random_string(15)
'5M2RW5kTUVVRxAT'
>>> 
>>> random_string(15)
'VFdwQmVFOVRNSGR'
>>> 
>>> random_string(15)
'5M2RS9kQUFVR5sW'
>>> 
>>> random_string(15)
'=AzN2MDMy4iNzoz'
>>> 
>>> random_string(15)
'MjAxOS0wNS0yMSA'
>>> 

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc