
Security News
NVD Quietly Sweeps 100K+ CVEs Into a “Deferred” Black Hole
NVD now marks all pre-2018 CVEs as "Deferred," signaling it will no longer enrich older vulnerabilities, further eroding trust in its data.
LIDA is a library for generating data visualizations and data-faithful infographics. LIDA is grammar agnostic (will work with any programming language and visualization libraries e.g. matplotlib, seaborn, altair, d3 etc) and works with multiple large language model providers (OpenAI, Azure OpenAI, PaLM, Cohere, Huggingface). Details on the components of LIDA are described in the paper here and in this tutorial notebook. See the project page here for updates!.
Note on Code Execution: To create visualizations, LIDA generates and executes code. Ensure that you run LIDA in a secure environment.
LIDA treats visualizations as code and provides a clean api for generating, executing, editing, explaining, evaluating and repairing visualization code.
from lida import Manager, llm
lida = Manager(text_gen = llm("openai")) # palm, cohere ..
summary = lida.summarize("data/cars.csv")
goals = lida.goals(summary, n=2) # exploratory data analysis
charts = lida.visualize(summary=summary, goal=goals[0]) # exploratory data analysis
Setup and verify that your python environment is python 3.10
or higher (preferably, use Conda). Install the library via pip.
pip install lida
Once requirements are met, setup your api key. Learn more about setting up keys for other LLM providers here.
export OPENAI_API_KEY=<your key>
Alternatively you can install the library in dev model by cloning this repo and running pip install -e .
in the repository root.
LIDA comes with an optional bundled ui and web api that you can explore by running the following command:
lida ui --port=8080 --docs
Then navigate to http://localhost:8080/ in your browser. To view the web api specification, add the --docs
option to the cli command, and navigate to http://localhost:8080/api/docs
in your browser.
The fastest and recommended way to get started after installation will be to try out the web ui above or run the tutorial notebook.
The LIDA web api and ui can be setup using docker and the command below (ensure that you have docker installed, and you have set your OPENAI_API_KEY
environment variable).
docker compose up
Given a dataset, generate a compact summary of the data.
from lida import Manager
lida = Manager()
summary = lida.summarize("data/cars.json") # generate data summary
Generate a set of visualization goals given a data summary.
goals = lida.goals(summary, n=5, persona="ceo with aerodynamics background") # generate goals
Add a persona
parameter to generate goals based on that persona.
Generate, refine, execute and filter visualization code given a data summary and visualization goal. Note that LIDA represents visualizations as code.
# generate charts (generate and execute visualization code)
charts = lida.visualize(summary=summary, goal=goals[0], library="matplotlib") # seaborn, ggplot ..
Given a visualization, edit the visualization using natural language.
# modify chart using natural language
instructions = ["convert this to a bar chart", "change the color to red", "change y axes label to Fuel Efficiency", "translate the title to french"]
edited_charts = lida.edit(code=code, summary=summary, instructions=instructions, library=library, textgen_config=textgen_config)
Given a visualization, generate a natural language explanation of the visualization code (accessibility, data transformations applied, visualization code)
# generate explanation for chart
explanation = lida.explain(code=charts[0].code, summary=summary)
Given a visualization, evaluate to find repair instructions (which may be human authored, or generated), repair the visualization.
evaluations = lida.evaluate(code=code, goal=goals[i], library=library)
Given a dataset, generate a set of recommended visualizations.
recommendations = lida.recommend(code=code, summary=summary, n=2, textgen_config=textgen_config)
Given a visualization, generate a data-faithful infographic. This methods should be considered experimental, and uses stable diffusion models from the peacasso library. You will need to run pip install lida[infographics]
to install the required dependencies.
infographics = lida.infographics(visualization = charts[0].raster, n=3, style_prompt="line art")
LIDA uses the llmx library as its interface for text generation. llmx supports multiple local models including HuggingFace models. You can use the huggingface models directly (assuming you have a gpu) or connect to an openai compatible local model endpoint e.g. using the excellent vllm library.
!pip3 install --upgrade llmx==0.0.17a0
# Restart the colab session
from lida import Manager
from llmx import llm
text_gen = llm(provider="hf", model="uukuguy/speechless-llama2-hermes-orca-platypus-13b", device_map="auto")
lida = Manager(text_gen=text_gen)
# now you can call lida methods as above e.g.
sumamry = lida.summarize("data/cars.csv") # ....
from lida import Manager, TextGenerationConfig , llm
model_name = "uukuguy/speechless-llama2-hermes-orca-platypus-13b"
model_details = [{'name': model_name, 'max_tokens': 2596, 'model': {'provider': 'openai', 'parameters': {'model': model_name}}}]
# assuming your vllm endpoint is running on localhost:8000
text_gen = llm(provider="openai", api_base="http://localhost:8000/v1", api_key="EMPTY", models=model_details)
lida = Manager(text_gen = text_gen)
Naturally, some of the limitations above could be addressed by a much welcomed PR.
A short paper describing LIDA (Accepted at ACL 2023 Conference) is available here.
@inproceedings{dibia2023lida,
title = "{LIDA}: A Tool for Automatic Generation of Grammar-Agnostic Visualizations and Infographics using Large Language Models",
author = "Dibia, Victor",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-demo.11",
doi = "10.18653/v1/2023.acl-demo.11",
pages = "113--126",
}
LIDA builds on insights in automatic generation of visualization from an earlier paper - Data2Vis: Automatic Generation of Data Visualizations Using Sequence to Sequence Recurrent Neural Networks.
FAQs
LIDA: Automatic Generation of Visualizations from Data
We found that lida demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
NVD now marks all pre-2018 CVEs as "Deferred," signaling it will no longer enrich older vulnerabilities, further eroding trust in its data.
Research
Security News
Lazarus-linked threat actors expand their npm malware campaign with new RAT loaders, hex obfuscation, and over 5,600 downloads across 11 packages.
Security News
Safari 18.4 adds support for Iterator Helpers and two other TC39 JavaScript features, bringing full cross-browser coverage to key parts of the ECMAScript spec.