You're Invited:Meet the Socket Team at BlackHat and DEF CON in Las Vegas, Aug 4-6.RSVP
Socket
Book a DemoInstallSign in
Socket

livekit-plugins-turn-detector

Package Overview
Dependencies
Maintainers
0
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

livekit-plugins-turn-detector

End of utterance detection for LiveKit Agents

1.2.5
Source
pipPyPI
Maintainers
0

Turn detector plugin for LiveKit Agents

This plugin introduces end-of-turn detection for LiveKit Agents using a custom open-weight model to determine when a user has finished speaking.

Traditional voice agents use VAD (voice activity detection) for end-of-turn detection. However, VAD models lack language understanding, often causing false positives where the agent interrupts the user before they finish speaking.

By leveraging a language model specifically trained for this task, this plugin offers a more accurate and robust method for detecting end-of-turns.

See https://docs.livekit.io/agents/build/turns/turn-detector/ for more information.

Installation

pip install livekit-plugins-turn-detector

Usage

English model

The English model is the smaller of the two models. It requires 200MB of RAM and completes inference in ~10ms

from livekit.plugins.turn_detector.english import EnglishModel

session = AgentSession(
    ...
    turn_detection=EnglishModel(),
)

Multilingual model

We've trained a separate multilingual model that supports the following languages: English, French, Spanish, German, Italian, Portuguese, Dutch, Chinese, Japanese, Korean, Indonesian, Russian, Turkish

The multilingual model requires ~400MB of RAM and completes inferences in ~25ms.

from livekit.plugins.turn_detector.multilingual import MultilingualModel

session = AgentSession(
    ...
    turn_detection=MultilingualModel(),
)

Usage with RealtimeModel

The turn detector can be used even with speech-to-speech models such as OpenAI's Realtime API. You'll need to provide a separate STT to ensure our model has access to the text content.

session = AgentSession(
    ...
    stt=deepgram.STT(model="nova-3", language="multi"),
    llm=openai.realtime.RealtimeModel(),
    turn_detection=MultilingualModel(),
)

Running your agent

This plugin requires model files. Before starting your agent for the first time, or when building Docker images for deployment, run the following command to download the model files:

python my_agent.py download-files

Model system requirements

The end-of-turn model is optimized to run on CPUs with modest system requirements. It is designed to run on the same server hosting your agents.

The model requires <500MB of RAM and runs within a shared inference server, supporting multiple concurrent sessions.

License

The plugin source code is licensed under the Apache-2.0 license.

The end-of-turn model is licensed under the LiveKit Model License.

Keywords

audio

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

About

Packages

Stay in touch

Get open source security insights delivered straight into your inbox.

  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc

U.S. Patent No. 12,346,443 & 12,314,394. Other pending.