Security News
Fluent Assertions Faces Backlash After Abandoning Open Source Licensing
Fluent Assertions is facing backlash after dropping the Apache license for a commercial model, leaving users blindsided and questioning contributor rights.
pip install llamacpp
pip install .
You will need to obtain the weights for LLaMA yourself. There are a few torrents floating around as well as some huggingface repositories (e.g https://huggingface.co/nyanko7/LLaMA-7B/). Once you have them, copy them into the models folder.
ls ./models
65B 30B 13B 7B tokenizer_checklist.chk tokenizer.model
Convert the weights to GGML format using llamacpp-convert
. Then use llamacpp-quantize
to quantize them into INT4. For example, for the 7B parameter model, run
llamacpp-convert ./models/7B/ 1
llamacpp-quantize ./models/7B/
llamacpp-cli
Note that running llamacpp-convert
requires torch
, sentencepiece
and numpy
to be installed. These packages are not installed by default when your install llamacpp
.
The package installs the command line entry point llamacpp-cli
that points to llamacpp/cli.py
and should provide about the same functionality as the main
program in the original C++ repository. There is also an experimental llamacpp-chat
that is supposed to bring up a chat interface but this is not working correctly yet.
Documentation is TBD. But the long and short of it is that there are two interfaces
LlamaInference
- this one is a high level interface that tries to take care of most things for you. The demo script below uses this.LlamaContext
- this is a low level interface to the underlying llama.cpp API. You can use this similar to how the main example in llama.cpp
does uses the C API. This is a rough implementation and currently untested except for compiling successfully.See llamacpp/cli.py
for a detailed example. The simplest demo would be something like the following:
import sys
import llamacpp
def progress_callback(progress):
print("Progress: {:.2f}%".format(progress * 100))
sys.stdout.flush()
params = llamacpp.InferenceParams.default_with_callback(progress_callback)
params.path_model = './models/7B/ggml-model-q4_0.bin'
model = llamacpp.LlamaInference(params)
prompt = "A llama is a"
prompt_tokens = model.tokenize(prompt, True)
model.update_input(prompt_tokens)
model.ingest_all_pending_input()
model.print_system_info()
for i in range(20):
model.eval()
token = model.sample()
text = model.token_to_str(token)
print(text, end="")
# Flush stdout
sys.stdout.flush()
model.print_timings()
FAQs
Python bindings for @ggerganov's llama.cpp
We found that llamacpp demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Fluent Assertions is facing backlash after dropping the Apache license for a commercial model, leaving users blindsided and questioning contributor rights.
Research
Security News
Socket researchers uncover the risks of a malicious Python package targeting Discord developers.
Security News
The UK is proposing a bold ban on ransomware payments by public entities to disrupt cybercrime, protect critical services, and lead global cybersecurity efforts.